Matematica

Appunti di Matematica 3

Michele prof. Perini

IISS Copernico Pasoli - Liceo Scientifico

A.S. 2023-2024

Michele prof. Perini Matematica 1 / 213

- Funzioni
 - Generalità
 - Grafico
 - Pari e dispari
 - Monotone
 - Composte e inverse
 - Grafici
- Successioni
 - Monotone
 - Definizioni ricorsive
 - Principio di induzione
 - Progressione aritmetica
 - Progressione geometrica
- Vettori 2D e piano cartesiano

Michele prof. Perini Matematica 2 / 213

- Definizione
- Modulo
- Scalare per vettore
- Somma
- Prodotto scalare
- Rette
- Determinanti
- Distanza punto-retta
- Fasci di rette
- Introduzione alle trasformazioni lineari
 - Simmetria centrale
 - Simmetria assiale
 - Traslazione
 - Dilatazioni

Michele prof. Perini Matematica 3 / 213

- Omotetie
- Grafici
- Goniometria
 - Angoli
 - Funzioni goniometriche
 - Angoli associati
 - Triangoli rettangoli
 - Grafici funzioni goniometriche
 - Funzioni periodiche
 - Funzioni goniometriche inverse
 - Equazioni e disequazioni
 - Formule di addizione e sottrazione
 - Formule di duplicazione
 - Formule di bisezione

- Formule parametriche
- Funzione lineare in seno e coseno
- Esercizi: formule di prostaferesi e di Werner
- Coniche
 - Circonferenza
 - Ellisse
 - Parabola
 - Iperbole
 - Coniche senza il termine xy
 - Sezioni di cono
- Trigonometria
 - Triangoli rettangoli
 - Area di un triangolo
 - Teorema della corda e dei seni

Michele prof. Perini

- Teorema del coseno
- Coseno e prodotto scalare
- Statistica
 - Sommatorie
 - Dati e loro rappresentazione
 - Frequenze assolute
 - Frequenze relative
 - Frequenze cumulate
 - Frequenze relative cumulate
 - La media aritmetica
 - La varianza
 - La deviazione standard
 - Test del chi quadro di Cramer
 - Regressione lineare

Le funzioni sono particolari relazioni.

Una relazione $\mathcal{R} \subseteq X \times Y$ è una funzione se:

$$\forall x \in X, \forall y_1, y_2 \in Y, x \mathcal{R} y_1 \wedge x \mathcal{R} y_2 \Leftrightarrow y_1 = y_2$$

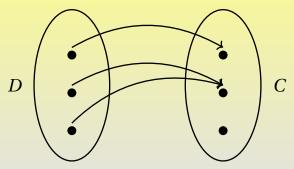
Notazione per una funzione:

$$y = f(x): X \to Y$$

- l'insieme X si chiama anche dominio, D
- ullet l'insieme Y si chiama codominio, C
- L'insieme $I = \{y \in C : y = f(x), x \in D\}$ si chiama immagine. In generale $I \subseteq C$.

Generalità

Rappresentazione sagittale di una funzione $f(x): D \rightarrow C$

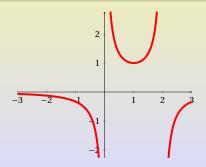


una funzione è un collegamento, una regola tra elementi dell'insieme dominio, D, e elementi dell'insieme codominio, C, che abbina ad ogni elemento $x \in D$ uno e uno solo elemento $y \in C$.

Grafico di una funzione

Data la funzione $f(x): D \to C$ si chiama grafico di f l'insieme delle coppie ordinate:

$$G = \{(x, f(x)) : x \in D\}$$



Funzioni uguali

Due funzioni f e g sono uguali se hanno lo stesso dominio D e inoltre:

$$f(x) = g(x), \ \forall x \in D$$

Funzioni pari^a

^all nome di queste funzioni deriva dal fatto che la proprietà che le definisce è tipica delle funzioni polinomiali che presentano solo potenze pari della variabile indipendente.

Una funzione $f(x):D\to\mathbb{R}$ si dice pari se

$$f(-x) = f(x), \ \forall x \in D$$

le funzioni pari sono simmetriche rispetto all'asse γ .

Funzioni dispari^a

^all nome di queste funzioni deriva dal fatto che la proprietà che le definisce è tipica delle funzioni polinomiali che presentano solo potenze dispari della variabile indipendente.

Una funzione $f(x): D \to \mathbb{R}$ si dice dispari se

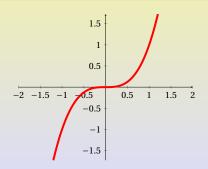
$$f(-x) = -f(x), \ \forall x \in D$$

le funzioni dispari sono simmetriche rispetto all'origine.

Funzioni strettamente crescenti

 $f: D \to C$ è strettamente crescente in $I \subset D$ se:

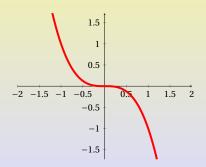
$$x_1 < x_2 \rightarrow f(x_1) < f(x_2), \ \forall x_1, x_2 \in I$$



Funzioni strettamente decrescenti

 $f: D \to C$ è strettamente decrescente in $I \subset D$ se:

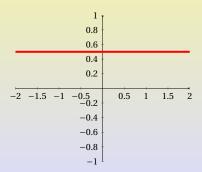
$$x_1 < x_2 \rightarrow f(x_1) > f(x_2), \ \forall x_1, x_2 \in I$$



Funzioni costanti

 $f:D\to C$ è costante in $I\subset D$ se:

$$f(x_1) = f(x_2), \ \forall x_1, x_2 \in I$$

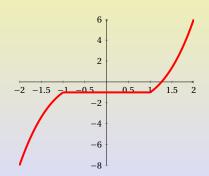


Matematica

Funzioni crescenti

 $f: D \to C$ è crescente in $I \subset D$ se:

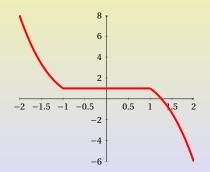
$$x_1 < x_2 \rightarrow f(x_1) \le f(x_2), \ \forall x_1, x_2 \in I$$



Funzioni decrescenti

 $f: D \to C$ è decrescente in $I \subset D$ se:

$$x_1 < x_2 \to f(x_1) \ge f(x_2), \ \forall x_1, x_2 \in I$$



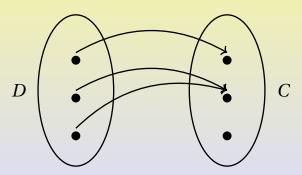
17 / 213

Funzioni monotone

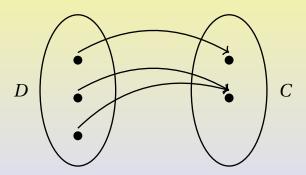
Una funzione crescente o decrescente in un certo sottoinsieme I del suo dominio si dice monotona in I

Una funzione $y = f(x): D \to C$ può essere (o non essere):

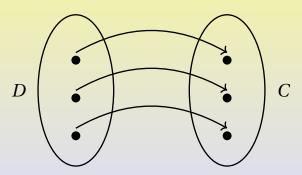
suriettiva $C = I = \{y \in C : y = f(x), x \in D\}$ iniettiva $\forall x_1, x_2 \in D, x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$ bijettiva se è sia suriettiva che iniettiva Rappresentazione sagittale di una funzione $f(x): D \to C$ non suriettiva, non iniettiva, non biiettiva:



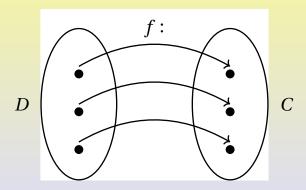
Rappresentazione sagittale di una funzione $f(x): D \rightarrow C$ suriettiva, non iniettiva, non biiettiva:



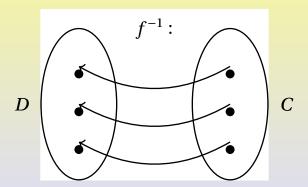
Rappresentazione sagittale di una funzione $f(x): D \rightarrow C$ suriettiva, iniettiva, biiettiva:



Le funzioni biiettive ammettono inversa. L'inversa di una funzione f(x) si indica con il simbolo $f^{-1}(x)$.

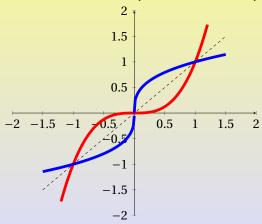


Le funzioni biiettive ammettono inversa. L'inversa di una funzione f(x) si indica con il simbolo $f^{-1}(x)$.



Composte e inverse

I grafici delle funzioni inverse sono simmetrici rispetto alla bisettrice del primo e terzo quadrante.



Funzioni composte

Date due funzioni f e g, si dice funzione composta di f dopo g, e si indica con il simbolo $f \circ g$ la funzione:

$$f \circ g(x) = f(g(x))$$

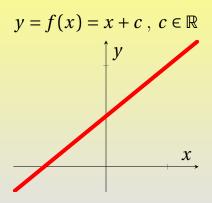
in generale $f \circ g(x) \neq g \circ f(x)$.

Composizione di funzioni inverse

Date due funzioni f e f^{-1} , una inversa dell'altra si ha che $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$ o con altri simboli $f(f^{-1}(x)) = f^{-1}(f(x)) = x$.

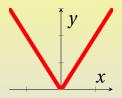
Funzioni

Grafici



La funzione f(x) = x + c è iniettiva e monotona crescente $\forall c \in \mathbb{R}$, può essere applicata ad ambo i membri di equazioni, disequazioni e disuguaglianze non modificando il loro insieme delle soluzioni.

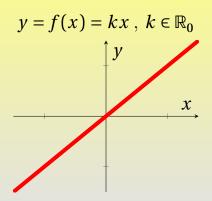
$$y = f(x) = |x|$$



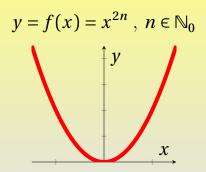
La funzione f(x) = |x| è non iniettiva e non monotona crescente su tutto \mathbb{R} , può essere applicata ad ambo i membri di equazioni, disequazioni e disuguaglianze non modificando il loro insieme delle soluzioni se i membri sono entrambi positivi.

Funzioni

Grafici

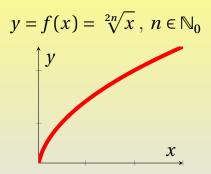


La funzione f(x) = kx, $k \in \mathbb{R}_0$ è iniettiva e monotona su tutto \mathbb{R} , può essere applicata ad ambo i membri di equazioni, disequazioni e disuguaglianze non modificando il loro insieme della soluzioni.



La funzione $f(x) = x^{2n}$ è non iniettiva e non monotona su tutto \mathbb{R} , può essere applicata ad ambo i membri di equazioni, disequazioni e disuguaglianze non modificando il loro insieme delle soluzioni se i membri sono entrambi positivi.

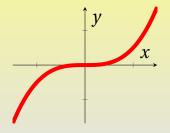
Michele prof. Perini Matematica 29 / 213



La funzione $f(x) = \sqrt[2n]{x}$ è iniettiva e monotona crescente su tutto \mathbb{R}^+ , può essere applicata ad ambo i membri di equazioni, disequazioni e disuguaglianze non modificando il loro insieme delle soluzioni solo se i membri sono positivi.

Michele prof. Perini Matematica 30 / 213

$$y = f(x) = x^{2n+1} , n \in \mathbb{N}_0$$



La funzione $f(x) = x^{2n+1}$ è iniettiva monotona crescente su tutto \mathbb{R} , può essere applicata ad ambo i membri di equazioni, disequazioni e disuguaglianze non modificando il loro insieme delle soluzioni.

$$y = f(x) = \sqrt[2n+1]{x}, \ n \in \mathbb{N}_0$$

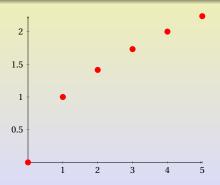
La funzione $f(x) = \sqrt[2n+1]{x}$ è iniettiva e monotona crescente su tutto \mathbb{R} , può essere applicata ad ambo i membri di equazioni, disequazioni e disuguaglianze non modificando il loro insieme delle soluzioni.

Michele prof. Perini Matematica 32 / 213

Successioni

Successione

Una successione è una funzione $s(n): D \subseteq \mathbb{N} \to \mathbb{R}$. I termini di una successione si indicano con i simboli s(n) o semplicemente s_n .



Michele prof. Perini Matematica 33 / 213

Monotonia delle successioni

Una successione $s(n):D\subseteq\mathbb{N}\to\mathbb{R}$ si dice: strettamente crescente se $s_n< s_{n+1} \ \forall n\in D$ strettamente decrescente se $s_n> s_{n+1} \ \forall n\in D$ costante se $s_n=s_{n+1} \ \forall n\in D$ crescente se $s_n\leq s_{n+1} \ \forall n\in D$ decrescente se $s_n\geq s_{n+1} \ \forall n\in D$

Definizione ricorsiva: potenza ad esponente naturale

Con $a \in \mathbb{R}_0$ e $n \in \mathbb{N}$:

$$a^n = \begin{cases} 1 & \text{se } n = 0 \\ a \cdot a^{n-1} & \text{se } n \neq 0 \end{cases}$$

Esempio:

$$2^4 = 2 \cdot 2^3 = 2 \cdot 2 \cdot 2^2 = 2 \cdot 2 \cdot 2 \cdot 2^1 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2^0 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 1 = 16$$

Definizione ricorsiva: fattoriale

Con $n \in \mathbb{N}$:

$$n! = \begin{cases} 1 & \text{se } n = 0 \\ n \cdot (n-1)! & \text{se } n \neq 0 \end{cases}$$

Esempio:

$$4! = 4 \cdot 3! = 4 \cdot 3 \cdot 2! = 4 \cdot 3 \cdot 2 \cdot 1! = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0! = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1 = 24$$

Principio di induzione

Con $n \in \mathbb{N}$ e $\mathcal{P}(n)$ una proprietà. Se $\mathcal{P}(0)$ è vera e $\forall n \in \mathbb{N}$ $\mathcal{P}(n) \to \mathcal{P}(n+1)$ allora $\mathcal{P}(n)$ vale per tutti gli $n \in \mathbb{N}$.

Il principio di induzione permette di dimostrare proprietà generali in modo estremamente semplice.

Definizione ricorsiva: progressione aritmetica

Con $n \in \mathbb{N}$ e $d \in \mathbb{R}$:

$$a_n = \begin{cases} a_0 & \text{se} \quad n = 0\\ d + a_{n-1} & \text{se} \quad n \neq 0 \end{cases}$$

Esempio:

$$a_n = \begin{cases} 3 & \text{se} \quad n = 0\\ 2 + a_{n-1} & \text{se} \quad n \neq 0 \end{cases}$$

$$a_3 = 2 + a_2 = 2 + 2 + a_1 = 2 + 2 + 2 + a_0 = 2 + 2 + 2 + 3 = 9$$

Michele prof. Perini Matematica 38 / 213

Progressione aritmetica: formula generale dimostrata per induzione

Se a_n è una progressione aritmetica di ragione d si ha che $a_n = a_0 + nd$. Per dimostrare la proprietà $a_n = a_0 + nd$ usiamo il principio di induzione:

- $a_0 = a_0 + 0 \cdot d = a_0$ la proprietà è verificata per n = 0
- $a_{n+1} = a_n + d = a_0 + nd + d = a_0 + (n+1)d = a_{n+1}$, per tutti i naturali se la proprietà $a_n = a_0 + nd$ è vera per n allora è vera anche per n+1

Quindi la proprietà $a_n = a_0 + nd$ è valida

39 / 213

Matematica

Somma termini progressione aritmetica: dimostrazione per induzione

Se a_n è una progressione aritmetica di ragione d si ha che $s_n = \sum_{i=0}^n a_i = (n+1)a_0 + \frac{n(n+1)}{2}d$. Per dimostrare la proprietà usiamo il principio di induzione:

- $s_0 = \sum_{i=0}^0 a_i = (0+1)a_0 + \frac{0(0+1)}{2}d = a_0$ la proprietà è verificata per n=0
- $s_{n+1} = a_{n+1} + s_n = a_0 + (n+1)d + (n+1)a_0 + \frac{n(n+1)}{2}d = (n+2)a_0 + \frac{n^2+3n+2}{2}d = (n+2)a_0 + \frac{(n+1)(n+2)}{2}d = s_{n+1},$ per tutti i naturali se la proprietà è vera per n allora è vera anche per n+1

Quindi la proprietà $s_n = (n+1)a_0 + \frac{n(n+1)}{2}d$ è valida $\forall n \in \mathbb{N}$.

Definizione ricorsiva: progressione geometrica

Con $n \in \mathbb{N}$ e $q \in \mathbb{R}_0$:

$$a_n = \begin{cases} a_0 & \text{se} \quad n = 0\\ q \cdot a_{n-1} & \text{se} \quad n \neq 0 \end{cases}$$

Esempio:

$$a_n = \begin{cases} 3 & \text{se} \quad n = 0 \\ 2 \cdot a_{n-1} & \text{se} \quad n \neq 0 \end{cases}$$

$$a_3 = 2 \cdot a_2 = 2 \cdot 2 \cdot a_1 = 2 \cdot 2 \cdot 2 \cdot a_0 = 2 \cdot 2 \cdot 2 \cdot 3 = 24$$

Michele prof. Perini Matematica 41 / 213

Progressione geometrica: formula generale dimostrata per induzione

Se a_n è una progressione geometrica di ragione q si ha che $a_n = a_0 q^n$. Per dimostrare la proprietà $a_n = a_0 q^n$ usiamo il principio di induzione:

- $a_0 = a_0 q^0 = a_0$ la proprietà è verificata per n = 0
- $a_{n+1} = q \cdot a_n = q \cdot a_0 q^n = a_0 q^{n+1} = a_{n+1}$, per tutti i naturali se la proprietà $a_n = a_0 q^n$ è vera per n allora è vera anche per n+1

Quindi la proprietà $a_n = a_0 q^n$ è valida $\forall n \in \mathbb{N}$.

Michele prof. Perini Matematica 42 / 213

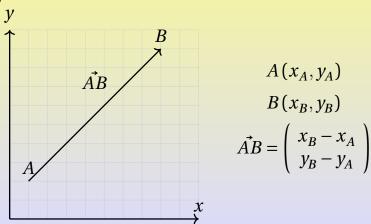
Somma termini progressione geometrica: dimostrazione per induzione

Se a_n è una progressione geometrica di ragione $q \neq 1$ si ha che $s_n = \sum_{i=0}^n a_i = a_0 \frac{1-q^{n+1}}{1-q}$. Per dimostrare la proprietà usiamo il principio di induzione:

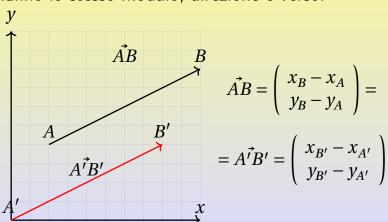
- $s_0 = \sum_{i=0}^0 a_i = a_0 \frac{1-q^{0+1}}{1-q} = a_0$ la proprietà è verificata per n=0
- $s_{n+1}=a_{n+1}+s_n=a_0q^{n+1}+a_0\frac{1-q^{n+1}}{1-q}=a_0\frac{1-q^{n+2}}{1-q}=s_{n+1},$ per tutti i naturali se la proprietà è vera per n allora è vera anche per n+1

Quindi la proprietà $s_n = a_0 \frac{1-q^{n+1}}{1-q}$ è valida $\forall n \in \mathbb{N}$.

Un vettore può essere definito come una ennupla ordinata sulla quale si definiscono le operazioni di prodotto scalare-vettore e di somma.



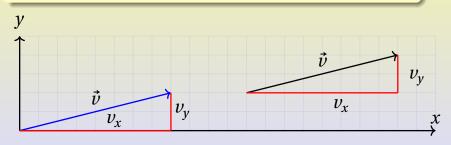
Due vettori sono equivalenti se hanno le medesime rispettive componenti. Due vettori equivalenti hanno lo stesso modulo, direzione e verso.



Michele prof. Perini Matematica 45 / 213

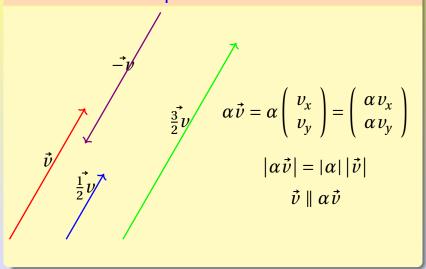
Modulo di un vettore

Dato il vettore
$$\vec{v}=\left(\begin{array}{c}v_x\\v_y\end{array}\right)$$
 il suo modulo è
$$|\vec{v}|=v=\sqrt{v_x^2+v_y^2}$$



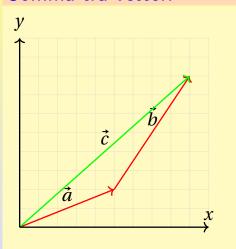
Vettori 2D e piano cartesiano Scalare per vettore

Prodotto scalare per vettore



Michele prof. Perini Matematica 47 / 213

Somma tra vettori

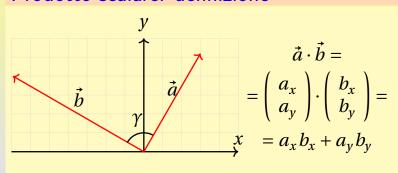


$$\vec{c} = \vec{a} + \vec{b} =$$

$$= \begin{pmatrix} a_x \\ a_y \end{pmatrix} + \begin{pmatrix} b_x \\ b_y \end{pmatrix} =$$

$$= \begin{pmatrix} a_x + b_x \\ a_y + b_y \end{pmatrix}$$

Prodotto scalare: definizione



Michele prof. Perini Matematica 49 / 213

Prodotto scalare: proprietà

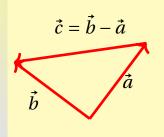
- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- $\bullet \ \vec{a} \cdot (k\vec{b}) = k\vec{b} \cdot \vec{a}$
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
- $\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2 = a^2$

Le proprietà possono essere facilmente dimostrate a partire dalla definizione, dimostriamo l'ultima:

$$\vec{a} \cdot \vec{a} = \vec{a}^2 = \begin{pmatrix} a_x \\ a_y \end{pmatrix} \cdot \begin{pmatrix} a_x \\ a_y \end{pmatrix} = a_x^2 + a_y^2 = |\vec{a}|^2$$

Michele prof. Perini Matematica 50 / 213

Prodotto scalare e perpendicolarità



Per il teorema di Pitagora si ha:

$$\vec{a}^2 + \vec{b}^2 = (\vec{b} - \vec{a})^2$$

$$\vec{a}^2 + \vec{b}^2 = \vec{a}^2 + \vec{b}^2 - 2\vec{a} \cdot \vec{b}$$

$$\vec{a} \cdot \vec{b} = 0$$

$$\vec{a} \perp \vec{b} \leftrightarrow \vec{a} \cdot \vec{b} = 0$$

Michele prof. Perini Matematica 51 / 213 Retta parallela al vettore \vec{v} e passante per il punto $P(x_P, y_P)$

$$\left(\begin{array}{c} x \\ y \end{array}\right) = k\,\vec{v} + \left(\begin{array}{c} x_P \\ y_P \end{array}\right)$$

Due rette, nel piano, definite rispettivamente dai vettori \vec{v} e \vec{w} sono parallele se e solo se $\vec{v} \parallel \vec{w}$, sono perpendicolari se e solo se $\vec{v} \perp \vec{w}$.

Retta passante per il punto $A(x_A, y_A)$ e $B(x_B, y_B)$

$$\begin{pmatrix} x \\ y \end{pmatrix} = k \begin{pmatrix} x_A - x_B \\ y_A - y_B \end{pmatrix} + \begin{pmatrix} x_A \\ y_A \end{pmatrix}$$

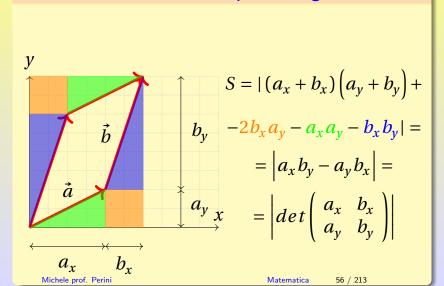
Equazione cartesiana retta passante per $P(x_P, y_P)$ e perpendicolare al vettore $\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$

$$\begin{pmatrix} x - x_P \\ y - y_P \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = 0 \rightarrow a(x - x_P) + b(y - y_P) = 0$$

Ricordiamo la definizione di determinante di una matrice 2×2

$$det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Determinanti e aree dei parallelogrammi



Determinanti e vettori paralleli:

$$\vec{v} \parallel \vec{w} \rightarrow \vec{v} = k\vec{w}$$

$$\det(\vec{v} \quad \vec{w}) = \det\begin{pmatrix} v_x & w_x \\ v_y & w_y \end{pmatrix} =$$

$$= \det\begin{pmatrix} kw_x & w_x \\ kw_y & w_y \end{pmatrix} = kw_x w_y - kw_x w_y = 0$$

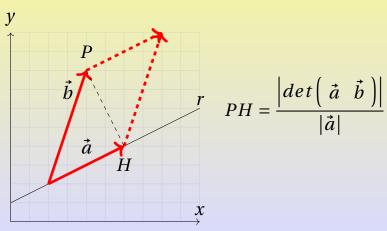
In conclusione:

$$\vec{v} \parallel \vec{w} \leftrightarrow det(\vec{v} \mid \vec{w}) = 0$$

Matematica

Vettori 2D e piano cartesiano Distanza punto-retta

Distanza tra retta r e punto P



Michele prof. Perini Matematica 58 / 213

I fasci di rette sono famiglie di rette ognuna delle quali si ottiene per un certo $k \in \mathbb{R}$.

- fascio di rette passanti per $P(x_P, y_P)$: $y - y_D = k(x - x_D)$
- fascio di rette parallele y = mx + k
- fascio generato da due rette generatrici: (ax + by + c) + k(a'x + b'y + c') = 0

Introduzione alle trasformazioni lineari

Affinità

Una affinità è una trasformazione lineare biunivoca di punti del piano in altri punti del piano. Una affinità $\mathscr{A}: \mathbb{R}^2 \to \mathbb{R}^2$ che trasforma punti di coordinate (x,y) in punti di coordinate (x',y') può essere descritta dal sistema di equazioni:

$$\mathscr{A}: \left\{ \begin{array}{l} x' = ax + by + h \\ y' = cx + dy + s \end{array} \right.$$

con $ad - bc \neq 0$ affinché la trasformazione sia invertibile. Per ora limiteremo lo studio di queste trasformazioni ad alcuni casi particolari.

Michele prof. Perini Matematica 60 / 213

Introduzione alle trasformazioni lineari

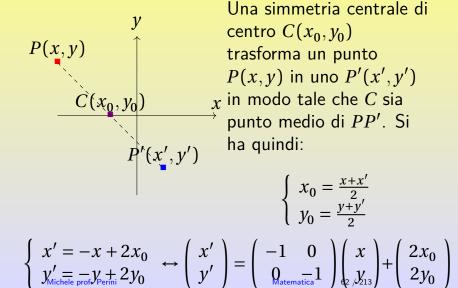
Affinità e matrici

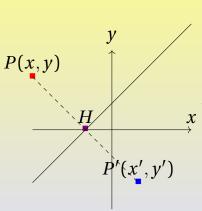
In termini matriciali una affinità $\mathscr{A}:\mathbb{R}^2\to\mathbb{R}^2$ può essere scritta come:

$$\mathscr{A}: \left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} h \\ s \end{array}\right)$$

o anche:

$$\mathscr{A}: \left(\begin{array}{c} x' \\ y' \end{array}\right) = L \left(\begin{array}{c} x \\ y \end{array}\right) + \vec{T}$$





Una simmetria assiale
rispetto alla retta s: ax + by + c = 0trasforma un punto P(x,y) in uno P'(x',y') $\stackrel{x}{\rightarrow}$ in modo tale che $PP' \perp s$ e sia PH = P'H. In
termini di equazioni:

$$\begin{cases} \frac{|ax+by+c|}{\sqrt{a^2+b^2}} = \frac{|ax'+by'+c|}{\sqrt{a^2+b^2}} \\ \frac{b}{a} = \frac{y-y'}{x-x'} \end{cases}$$

Una trasformazione di simmetria assiale ha quindi equazione:

$$\begin{cases} x' = \frac{b^2 - a^2}{a^2 + b^2} x - \frac{2ab}{a^2 + b^2} y - \frac{2ac}{a^2 + b^2} \\ y' = -\frac{2ab}{a^2 + b^2} x + \frac{a^2 - b^2}{a^2 + b^2} y - \frac{2bc}{a^2 + b^2} \end{cases}$$

o anche (in termini matriciali):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} b^2 - a^2 & -2ab \\ -2ab & a^2 - b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \frac{2c}{a^2 + b^2} \begin{pmatrix} a \\ b \end{pmatrix}$$

Michele prof. Perini Matematica 64 / 213

In particulare una simmetria rispetto a $y = y_0$ (con $a = 0, b = 1, c = -y_0$) ha equazione:

$$\begin{cases} x' = x \\ y' = -y + 2y_0 \end{cases}$$

o anche (in termini matriciali):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 2y_0 \end{pmatrix}$$

Michele prof. Perini

In particolare una simmetria rispetto a $x = x_0$ (con $a = 1, b = 0, c = -x_0$) ha equazione:

$$\begin{cases} x' = -x + 2x_0 \\ y' = y \end{cases}$$

o anche (in termini matriciali):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2x_0 \\ 0 \end{pmatrix}$$

Michele prof. Perini Matematica 66 / 213

In particolare una simmetria rispetto a y = x (con a = -1, b = 1, c = 0) ha equazione:

$$\begin{cases} x' = y \\ y' = x \end{cases}$$

o anche (in termini matriciali):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Michele prof. Perini Matematica 67 / 213

In particolare una simmetria rispetto a y = -x (con a = 1, b = 1, c = 0) ha equazione:

$$\begin{cases} x' = -y \\ y' = -x \end{cases}$$

o anche (in termini matriciali):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Michele prof. Perini Matematica 68 / 213

Introduzione alle trasformazioni lineari Traslazione

Traslazione:
$$\vec{T} = \begin{pmatrix} h \\ s \end{pmatrix}$$
, \longrightarrow

Michele prof. Perini Matematica 69 / 213

Introduzione alle trasformazioni lineari Traslazione

Equazione di una traslazione:

$$\begin{cases} x' = x + h \\ y' = y + s \end{cases}$$

o anche (in termini matriciali):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} h \\ s \end{pmatrix}$$

Michele prof. Perini

Matematica

Introduzione alle trasformazioni lineari Dilatazioni

Una dilatazione di centro l'origine ha equazione:

$$\begin{cases} x' = ax \\ y' = by \end{cases}$$

o anche (in termini matriciali):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Michele prof. Perini Matematica 71 / 213

Introduzione alle trasformazioni lineari Omotetie

Una omotetia di centro l'origine ha equazione:

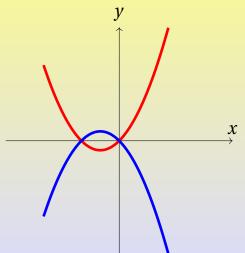
$$\begin{cases} x' = kx \\ y' = ky \end{cases}$$

o anche (in termini matriciali):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Michele prof. Perini Matematica 72 / 213

Grafico di
$$y = f(x)$$
 e di $y = -f(x)$



Michele prof. Perini Matematica 73 / 213

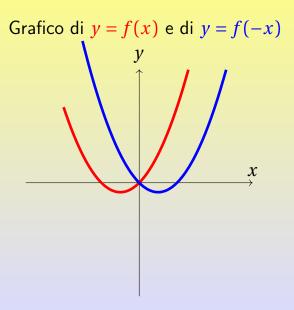
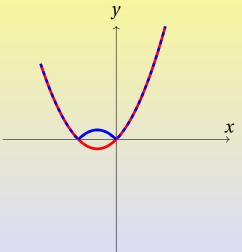
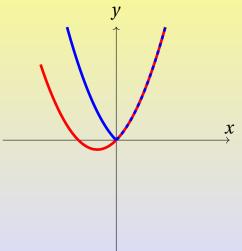


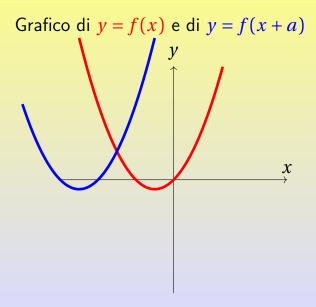
Grafico di
$$y = f(x)$$
 e di $y = |f(x)|$

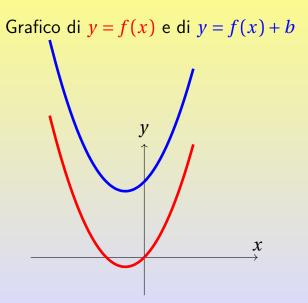


Michele prof. Perini Matematica 75 / 213

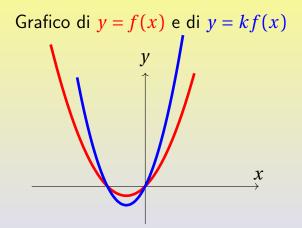
Grafico di
$$y = f(x)$$
 e di $y = f(|x|)$

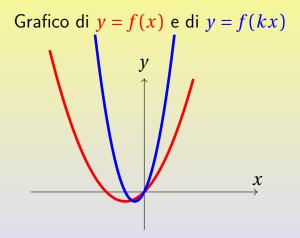






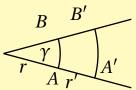
Michele prof. Perini Matematica 78 / 213





Angolo e sua unità di misura

Un angolo per la geometria razionale è la porzione di piano compresa tra due semirette. Questa definizione di angolo non è pienamente soddisfacente in quanto definire la misura di porzioni di piano non è semplice. Si ridefinisce perciò un angolo come rapporto tra arco e raggio.



$$\gamma = \frac{\widehat{AB}}{r} = \frac{\widehat{A'B}}{r'}$$

Angoli

Angolo e sua unitá di misura

L'unità di misura degli angoli è il radiante. Angolo giro:

 $\gamma = 2\pi$

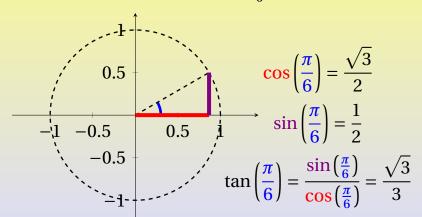
$$\gamma = 2\pi$$
Angolo piatto:

$$\gamma = \pi$$

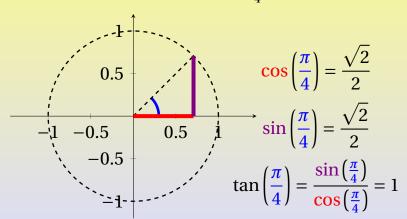
Angolo retto:

$$\gamma = \frac{\pi}{2}$$

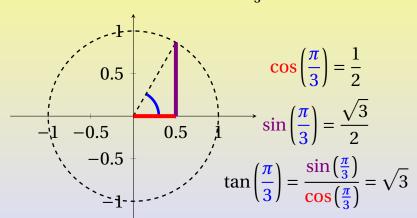
Particolari valori delle funzioni goniometriche: angolo di $\frac{\pi}{6}$



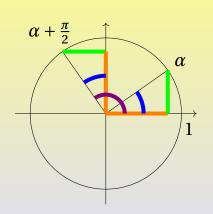
Particolari valori delle funzioni goniometriche: angolo di $\frac{\pi}{4}$



Particolari valori delle funzioni goniometriche: angolo di $\frac{\pi}{3}$



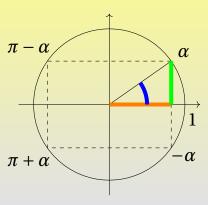
Angoli associati



$$\cos\left(\alpha + \frac{\pi}{2}\right) = -\sin\left(\alpha\right)$$

$$\sin\left(\alpha + \frac{\pi}{2}\right) = \cos\left(\alpha\right)$$

Angoli associati



$$\cos(-\alpha) = \cos(\alpha)$$

$$\sin(-\alpha) = -\sin(\alpha)$$

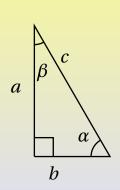
$$\cos(\pi - \alpha) = -\cos(\alpha)$$

$$\sin(\pi - \alpha) = \sin(\alpha)$$

$$\cos(\pi + \alpha) = -\cos(\alpha)$$

$$\sin(\pi + \alpha) = -\sin(\alpha)$$

Relazioni lato-angolo in un triangolo rettangolo:



$$a = c \cdot \sin \alpha = c \cdot \cos \beta$$

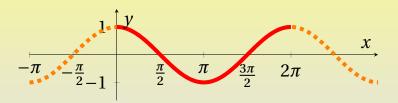
$$b = c \cdot \sin \beta = c \cdot \cos \alpha$$

$$c = \frac{a}{\sin \alpha} = \frac{a}{\cos \beta} = \frac{b}{\sin \beta} = \frac{b}{\cos \alpha}$$

$$\tan \alpha = \frac{a}{b}$$

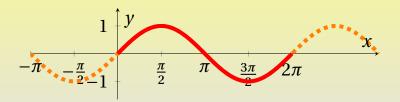
$$\tan \beta = \frac{b}{a}$$

Funzione coseno, $cos(x): \mathbb{R} \to [-1,1]$



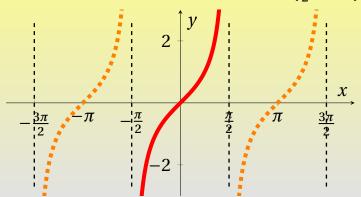
$$\cos(x) = \cos(x + 2k\pi), \ k \in \mathbb{Z}$$
$$\cos(-x) = \cos(x)$$

Funzione seno, $\sin(x): \mathbb{R} \to [-1,1]$



$$\sin(x) = \sin(x + 2k\pi), \ k \in \mathbb{Z}$$
$$\sin(-x) = -\sin(x)$$

Funzione tangente, $tan(x): \mathbb{R} - \left\{\frac{\pi}{2} + k\pi\right\} \to \mathbb{R}$



$$tan(x) = tan(x + k\pi), k \in \mathbb{Z}$$

$$\tan(-x) = -\tan(x)$$

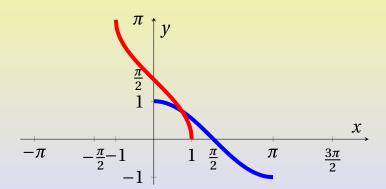
Michele prof. Perini Matematica 91 / 213

Funzioni periodiche

Una funzione si dice periodica se per essa vale $f(x) = f(x+T) \ \forall x$ del suo dominio e per un certo T > 0. Il minimo valore di T per cui è verificata la relazione precedente si dice periodo.

Seno e coseno sono periodiche di periodo 2π , tangente è periodica di periodo π .

Funzione coseno, $\cos(x):[0,\pi]\to[-1,1]$ Funzione arcocoseno, $\arccos(x):[-1,1]\to[0,\pi]$



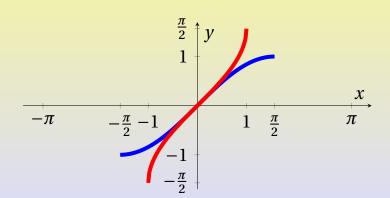
Michele prof. Perini

Matematica

93 / 213

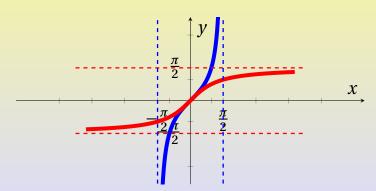
Funzione seno,
$$\sin(x): \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$$

Funzione arcoseno, $\arcsin(x): [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$



Michele prof. Perini Matematica 94 / 213

Funzione tangente,
$$\tan(x)$$
: $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\to \mathbb{R}$
Funzione arcotangente, $\arctan(x)$: $\mathbb{R} \to \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$



Per le funzioni goniometriche e le loro inverse valgono le relazioni¹:

$$cos(arccos(x)) = arccos(cos(x)) = x$$

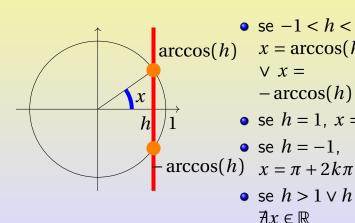
 $sin(arcsin(x)) = arcsin(sin(x)) = x$
 $tan(arctan(x)) = arctan(tan(x)) = x$

con *x* appartenente al dominio della funzione goniometrica o della sua inversa o di entrambe a seconda dell'insieme di esistenza delle scritture.

Michele prof. Perini

¹che sono particolari applicazioni della caratteristica generale delle funzioni inverse: $f(f^{-1}(x)) = f^{-1}(f(x)) = x$

$$\cos(x) = h$$

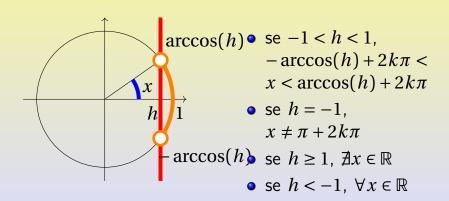


• se -1 < h < 1, $\arccos(h)$ $x = \arccos(h) + 2k\pi$ $\vee x =$ $-\arccos(h) + 2k\pi$

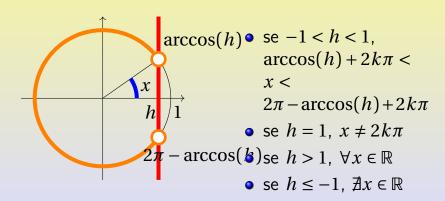
- se h = 1, $x = 2k\pi$
- se h = -1.
- se $h > 1 \lor h < -1$.

 $\exists x \in \mathbb{R}$

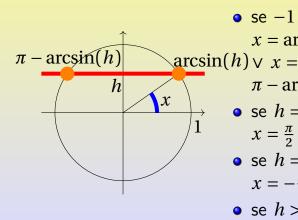
$$\cos(x) > h$$



$$\cos(x) < h$$



$$\sin(x) = h$$



• se -1 < h < 1. $x = \arcsin(h) + 2k\pi$

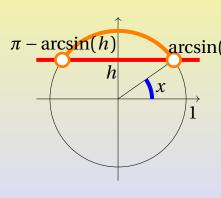
$$\pi - \arcsin(h) + 2k\pi$$

- se h = 1, $x = \frac{\pi}{2} + 2k\pi$
- se h = -1. $x = -\frac{\pi}{2} + 2k\pi$

Ala Centation

• se $h > 1 \lor h < -1$.

$$\sin(x) > h$$

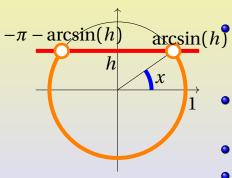


• se
$$-1 < h < 1$$
,
 $arcsin(h)arcsin(h) + 2k\pi < 1$

$$x < \pi - \arcsin(h) + 2k\pi$$

- se h = -1, $x \neq -\frac{\pi}{2} + 2k\pi$
- se $h \ge 1$, $\exists x \in \mathbb{R}$
- se h < -1, $\forall x \in \mathbb{R}$

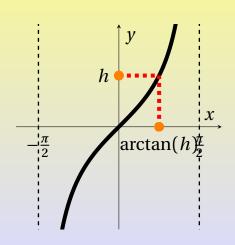
$$\sin(x) < h$$



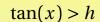
se -1 < h < 1, $-\pi \arcsin(h) + 2k\pi <$ $x < \arcsin(h) + 2k\pi$

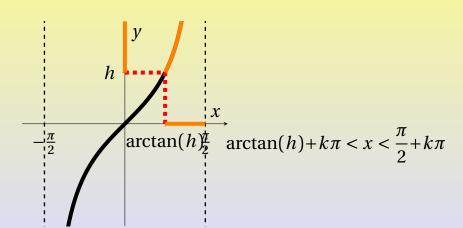
- se h = 1, $x \neq \frac{\pi}{2} + 2k\pi$
- se h > 1, $\forall x \in \mathbb{R}$
- se $h \le -1$, $\exists x \in \mathbb{R}$

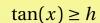
$$tan(x) = h$$

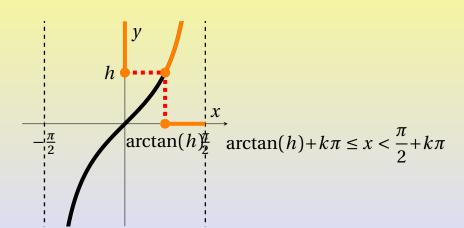


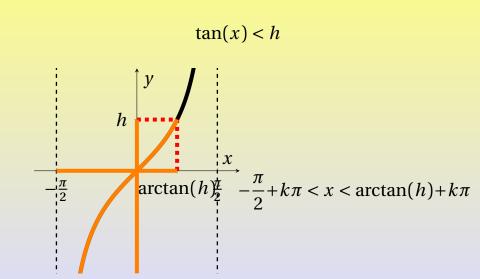
$$x = \arctan(h) + k\pi$$

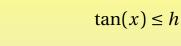


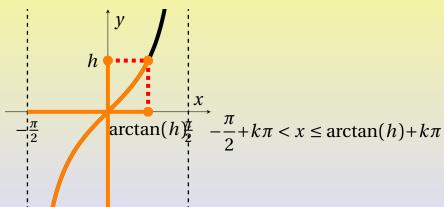


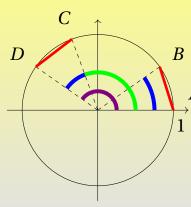












Ipotizziamo che sia:

$$0 < \beta < \alpha < 2\pi$$

$$A(1,0)$$
,
 $B(\cos(\alpha-\beta),\sin(\alpha-\beta))$,
 $C(\cos(\beta),\sin(\beta))$,
 $A D(\cos(\alpha),\sin(\alpha))$.

$$AB = CD$$

$$AB^{2} = CD^{2}$$

$$(1 - \cos(\alpha - \beta))^{2} + (-\sin(\alpha - \beta))^{2} =$$

$$= (\cos(\beta) - \cos(\alpha))^{2} + (\sin(\beta) - \sin(\alpha))^{2}$$

Michele prof. Perini Matematica 108 / 213

$$(1-\cos(\alpha-\beta))^2+(-\sin(\alpha-\beta))^2=(\cos(\beta)-\cos(\alpha))^2+(\sin(\beta)-\sin(\alpha))^2$$
 ricordando che $\cos^2(\gamma)+\sin^2(\gamma)=1$, sviluppiamo e otteniamo:

$$2-2\cos(\alpha-\beta) = 2-2\cos(\alpha)\cos(\beta) - 2\sin(\alpha)\sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

la relazione ottenuta è valida in generale essendo il coseno una funzione pari $(\cos(\alpha - \beta) = \cos(\beta - \alpha))$ e periodica di periodo 2π .

Michele prof. Perini Matematica 109 / 213

La formula di sottrazione del coseno può essere riscritta anche come:

$$\cos(\alpha - (-\beta)) = \cos(\alpha)\cos((-\beta)) + \sin(\alpha)\sin((-\beta))$$

ricordando che il seno è una funzione dispari e il coseno è una pari, si ottiene:

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

che è la formula di addizione del coseno.

Michele prof. Perini Matematica 110 / 213

Si è già dimostrato (nella sezione dedicata agli angoli associati) che $\cos(\frac{\pi}{2} + \gamma) = -\sin(\gamma)$, possiamo quindi scrivere:

$$\sin(\alpha + \beta) = -\cos\left(\frac{\pi}{2} + (\alpha + \beta)\right) = -\cos\left(\left(\frac{\pi}{2} + \alpha\right) + \beta\right)$$
$$= -\cos\left(\frac{\pi}{2} + \alpha\right)\cos(\beta) + \sin\left(\frac{\pi}{2} + \alpha\right)\sin(\beta) =$$
$$= \sin(\alpha)\cos(\beta) + \sin\left(\frac{\pi}{2} + \alpha\right)\sin(\beta) =$$

sempre nella sezione sugli angoli associati si è dimostrato che $\sin(\frac{\pi}{2} + \alpha) = \cos(\alpha)$, in sintesi si ha:

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

che è la formula di addizione del seno.

Michele prof. Perini

Matematica

111 / 213

Ricordando che il seno è una funzione dispari e il coseno è una pari, dalla formula di addizione del seno si può ottenere:

$$\sin(\alpha + (-\beta)) = \sin(\alpha)\cos(-\beta) + \cos(\alpha)\sin(-\beta)$$

da cui in sintesi si ricava la formula di sottrazione per il seno:

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

Michele prof. Perini Matematica 112 / 213

Dalla definizione di tangente e dalle formule di addizione si può ottenere:

$$\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} =$$

$$= \frac{\sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)} =$$

$$= \frac{\frac{\sin(\alpha)\cos(\beta)}{\cos(\alpha)\cos(\beta)} + \frac{\cos(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta)}}{\frac{\cos(\alpha)\cos(\beta)}{\cos(\alpha)\cos(\beta)} - \frac{\sin(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta)}} = \frac{\frac{\sin(\alpha)}{\cos(\alpha)} + \frac{\sin(\beta)}{\cos(\beta)}}{1 - \frac{\sin(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta)}} =$$

$$= \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

Michele prof. Perini Matematica 113 / 213

Riassumendo quanto visto in precedenza la formula di addizione della tangente è:

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

ricordando che la tangente è una funzione dispari si può ottenere la formula di sottrazione della tangente come:

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

le formule di addizione e sottrazione della tangente sono valide solamente per angoli che siano nel dominio della tangente (cioè angoli $\neq \frac{\pi}{2} + k\pi$).

Michele prof. Perini Matematica 114 / 213

Dalla formula di addizione del coseno per $\alpha = \beta$ si ottiene:

$$cos(\alpha + \alpha) = cos(2\alpha) = cos^{2}(\alpha) - sin^{2}(\alpha) =$$

ricordando anche la relazione goniometrica fondamentale $\cos^2(\alpha) + \sin^2(\alpha) = 1$:

$$= 1 - 2\sin^2(\alpha) = 2\cos^2(\alpha) - 1$$

in definitiva le formule di duplicazione del coseno sono:

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 1 - 2\sin^2(\alpha) = 2\cos^2(\alpha) - 1$$

Dalla formula di addizione del seno per $\alpha = \beta$ si ottiene:

$$\sin(\alpha + \alpha) = \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

in definitiva la formula di duplicazione del seno è:

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

Formule di duplicazione

Dalla formula di addizione della tangente per $\alpha = \beta$ si ottiene:

$$\tan(\alpha + \alpha) = \tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$$

in definitiva la formula di duplicazione della tangente è:

$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$$

la formula di duplicazione della tangente ha significato solo per $2\alpha \neq \frac{\pi}{2} + k\pi \wedge \alpha \neq \frac{\pi}{2} + k\pi$.

Dalle formule di duplicazione del coseno si possono ricavare le equazioni $\sin^2(\alpha) = \frac{1-\cos(2\alpha)}{2}$ e $\cos^2(\alpha) = \frac{1+\cos(2\alpha)}{2}$ che riscritte per un angolo $\frac{\alpha}{2}$ anziché α diventano:

$$\sin^2\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{2}$$

$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1 + \cos(\alpha)}{2}$$

che sono le formule di bisezione per seno e coseno.

Per la tangente è possibile ricavare diverse formule di bisezione. Qui ne ricaviamo due utilizzando le formule di duplicazione e quelle di bisezione per seno e coseno:

$$\tan\left(\frac{\alpha}{2}\right) = \frac{\sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right)} = \frac{2\sin^2\left(\frac{\alpha}{2}\right)}{2\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{2}\right)} = \frac{2\frac{1-\cos(\alpha)}{2}}{\sin(\alpha)} = \frac{1-\cos(\alpha)}{\sin(\alpha)}$$

$$\tan\left(\frac{\alpha}{2}\right) = \frac{\sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right)} = \frac{2\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{2}\right)}{2\cos^2\left(\frac{\alpha}{2}\right)} = \frac{\sin(\alpha)}{2^{\frac{1+\cos(\alpha)}{2}}} = \frac{\sin(\alpha)}{1+\cos(\alpha)}$$

in sintesi:

$$\tan\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{\sin(\alpha)} = \frac{\sin(\alpha)}{1 + \cos(\alpha)}$$

Le formule di bisezione per la tangente permettono di ricavare (per $\alpha \neq \pi + 2k\pi$):

$$\begin{cases} \tan\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{\sin(\alpha)} \\ \tan\left(\frac{\alpha}{2}\right) = \frac{\sin(\alpha)}{1 + \cos(\alpha)} \end{cases} \rightarrow \begin{cases} \cos(\alpha) = \frac{1 - \tan^2\left(\frac{\alpha}{2}\right)}{1 + \tan^2\left(\frac{\alpha}{2}\right)} \\ \sin(\alpha) = \frac{2\tan\left(\frac{\alpha}{2}\right)}{1 + \tan^2\left(\frac{\alpha}{2}\right)} \end{cases}$$

essendo l'immagine della tangente l'insieme \mathbb{R} è possibile effettuare la sostituzione $t = \tan\left(\frac{\alpha}{2}\right)$ con $t \in \mathbb{R}$, questo permette di esprimere le funzioni goniometriche in funzione di un parametro reale:

$$\boxed{\sin(\alpha) = \frac{2t}{1+t^2} \left| \cos(\alpha) = \frac{1-t^2}{1+t^2} \right| \tan(\alpha) = \frac{2t}{1-t^2}}$$

Michele prof. Perini Matematica 120 / 213

Goniometria Funzione lineare in seno e coseno

Con $a \neq 0 \land b \neq 0$ si ha:

$$f(x) = a\sin(x) + b\cos(x) + c =$$

$$= \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin(x) + \frac{b}{\sqrt{a^2 + b^2}} \cos(x) \right) + c$$

i coefficienti $\frac{a}{\sqrt{a^2+b^2}}$ e $\frac{b}{\sqrt{a^2+b^2}}$ sono tali per cui la somma dei loro quadrati è 1, possono quindi essere interpretati come un particolare seno e coseno di un certo angolo, in particolare poniamo:

$$\cos(\gamma) = \frac{a}{\sqrt{a^2 + b^2}} \in \sin(\gamma) = \frac{b}{\sqrt{a^2 + b^2}}$$

Michele prof. Perini Matematica 121 / 213

Goniometria Funzione lineare in seno e coseno

la funzione lineare scritta anche in termini di seno e coseno di γ diventa:

$$f(x) = a\sin(x) + b\cos(x) + c =$$

$$= \sqrt{a^2 + b^2} (\cos(\gamma)\sin(x) + \sin(\gamma)\cos(x)) + c =$$

$$= \sqrt{a^2 + b^2} \sin(x + \gamma) + c$$

con

$$\begin{cases} \sin(\gamma) = \frac{b}{\sqrt{a^2 + b^2}} \\ \cos(\gamma) = \frac{a}{\sqrt{a^2 + b^2}} \end{cases}$$

Michele prof. Perini Matematica 122 / 213

Goniometria Esercizi: formule di prostaferesi e di Werner

Dimostra, per esercizio, le formule di prostaferesi:

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(q) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

Michele prof. Perini Matematica 123 / 213

Goniometria Esercizi: formule di prostaferesi e di Werner

Dimostra, per esercizio, le formule di Werner:

$$\sin(p)\sin(q) = \frac{1}{2}[\cos(p-q) - \cos(p+q)]$$

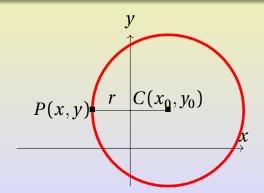
$$\cos(p)\cos(q) = \frac{1}{2}[\cos(p-q) + \cos(p+q)]$$

$$\sin(p)\cos(q) = \frac{1}{2}[\sin(p+q) + \sin(p-q)]$$

Michele prof. Perini Matematica 124 / 213

Circonferenza

Una circonferenza è il luogo dei punti del piano che hanno la stessa distanza, detta raggio (r), da un punto detto centro $C(x_0, y_0)$.



Equazione della circonferenza:

$$PC = r$$

$$PC^{2} = r^{2}$$

$$(x - x_{0})^{2} + (y - y_{0})^{2} = r^{2}$$

$$x^{2} + y^{2} - 2x_{0}x - 2y_{0}y + x_{0}^{2} + y_{0}^{2} - r^{2} = 0$$

$$x^{2} + y^{2} + ax + by + c = 0$$

$$con a = -2x_{0}, b = -2y_{0}, c = x_{0}^{2} + y_{0}^{2} - r^{2}.$$

Tangente ad una circonferenza (r / γ)

Una tangente ad una circonferenza è una retta che interseca la circonferenza in un solo punto. Per determinare la tangente ad una circonferenza è possibile:

- intersecare retta e circonferenza ottenendo una equazione di secondo grado, che ammette una sola soluzione se e solo se il $\Delta=0$
- imporre che la retta disti dal centro della circonferenza quanto il raggio.

Circonferenza² in sintesi:

Equazione	Note
centro-raggio:	$C(x_0, y_0)$
	r > 0
canonica:	$C\left(-\frac{a}{2},-\frac{b}{2}\right)$
$x^2 + y^2 + ax + by + c = 0$	$r = \sqrt{\frac{a^2 + b^2}{4} - c}$

 $^{^2}$ le equazioni ricavate descrivono tutte le possibili circonferenze sul piano xOy.

Fascio di circonferenze

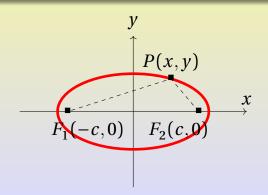
Un fascio di circonferenze è l'insieme dei punti delle curve ottenute al variare di $k \in \mathbb{R}$ dall'equazione:

$$x^{2} + y^{2} + ax + by + c + k(x^{2} + y^{2} + a'x + b'y + c') = 0$$

se k = -1 l'equazione del fascio di circonferenze può divenire quella di una retta, in tal caso quella retta è detta asse radicale.

Ellisse

Una ellisse è il luogo dei punti del piano P(x,y) che mantiene costante la somma delle distanze tra due punti fissi, F_1 e F_2 , detti fuochi.



Michele prof. Perini Matematica 130 / 213

Equazione di una ellisse con fuochi in $F_1(-c,0)$ e $F_2(c,0)$, a>0 e c>0:

$$PF_1 + PF_2 = 2a$$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$

$$(x+c)^2 + y^2 = 4a^2 + (x-c)^2 + y^2 - 4a\sqrt{(x-c)^2 + y^2}$$

$$4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4xc$$

Michele prof. Perini Matematica 131 / 213

$$a\sqrt{(x-c)^2 + y^2} = a^2 - xc$$
se $a^2 \ge xc \to x \le \frac{a^2}{c}$

$$a^2((x-c)^2 + y^2) = a^4 + x^2c^2 - 2a^2xc$$

$$(a^2 - c^2)x^2 + a^2y^2 = a^4 - a^2c^2$$

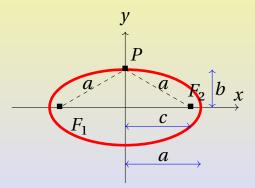
$$(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

Matematica

ponendo $b^2 = a^2 - c^2$ si ha:

$$\boxed{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1}$$



Le condizioni $x \le \frac{a^2}{c}$ e $b^2 = a^2 - c^2$ risultano sempre verificate. Matematica Visioni 133 / 213

Coniche Ellisse

Tangente ad una ellisse (r/\mathscr{E})

Una tangente ad una ellisse è una retta che interseca l'ellisse in un solo punto. Per determinare la tangente ad una ellisse è possibile:

- intersecare retta e ellisse ottenendo una equazione di secondo grado, che ammette una sola soluzione se e solo se il $\Delta=0$
- trasformare l'ellisse in una circonferenza tramite una trasformazione lineare, determinare la tangente alla circonferenza e successivamente applicare la trasformazione inversa per determinare la tangente all'ellisse.

Michele prof. Perini Matematica 134 / 213

Ellisse

Ellisse³ in sintesi:

Equazione	Note
fuochi su retta \parallel asse x :	centro: $C(x_0, y_0)$
$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$	fuochi: $F(x_0 \pm c, y_0)$
semiasse maggiore: a	$c = \sqrt{a^2 - b^2}$
semiasse minore: b	eccentricità: $e = \frac{c}{a}$
fuochi su retta \parallel asse y :	centro: $C(x_0, y_0)$
$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{h^2} = 1$	fuochi: $F(x_0, y_0 \pm c)$
semiasse maggiore: b	$c = \sqrt{b^2 - a^2}$
semiasse minore: a	eccentricità: $e = \frac{c}{b}$

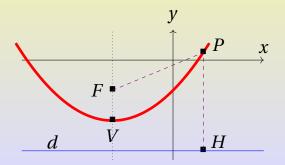
 $^{^3}$ le equazioni ricavate descrivono solo alcune delle possibili ellissi sul piano xOy, è possibile ricondurre tutte le ellissi a queste tramite una affinità.

Michele prof. Perini Matematica 135 / 213

Parabola

Parabola

Una parabola è il luogo dei punti del piano P(x, y) per cui rimane costante la distanza tra un punto detto fuoco (F) e una retta detta direttrice (d) a cui il fuoco non appartiene.



Parabola

Equazione di una parabola con asse parallelo all'asse y: $F(x_F, y_F)$ e direttrice $y = d (y_F \neq d)$:

$$PF = PH$$

$$\sqrt{(x - x_F)^2 + (y - y_F)^2} = |y - d|$$

$$(x - x_F)^2 + (y - y_F)^2 = (y - d)^2$$

$$y = \frac{1}{2(y_F - d)}x^2 + \frac{-x_F}{y_F - d}x + \frac{x_F^2 + y_F^2 - d^2}{2(y_F - d)}$$

$$y = ax^2 + bx + c$$

con
$$a = \frac{1}{2(y_F - d)}$$
, $b = \frac{-x_F}{y_F - d}$ e $c = \frac{x_F^2 + y_F^2 - d^2}{2(y_F - d)}$.

$$\begin{cases} a = \frac{1}{2(y_F - d)} \\ b = \frac{-x_F}{y_F - d} \\ c = \frac{x_F^2 + y_F^2 - d^2}{2(y_F - d)} \end{cases} \rightarrow \begin{cases} x_F = -\frac{b}{2a} \\ y_F = \frac{1 - (b^2 - 4ac)}{4a} \\ d = -\frac{1 + (b^2 - 4ac)}{4a} \end{cases}$$

ricordando che $\Delta = b^2 - 4ac$ il fuoco ha coordinate $F\left(-\frac{b}{2a}, \frac{1-\Delta}{4a}\right)$, la direttrice ha equazione $y = -\frac{1+\Delta}{4a}$ e l'asse di simmetria ha equazione $x = -\frac{b}{2a}$. Il vertice della parabola si può determinare intersecando l'asse di simmetria con la parabola stessa:

$$\begin{cases} x = -\frac{b}{2a} \\ y = ax^2 + bx + c \end{cases} \rightarrow \begin{cases} x = -\frac{b}{2a} \\ y = -\frac{\Delta}{4a} \end{cases} \rightarrow V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$$

Michele prof. Perini Matematica 138 / 213

Tangente ad una parabola (r / \mathscr{P})

Una tangente ad una parabola è una retta che interseca la parabola in un solo punto. Per determinare la tangente ad una parabola è sufficiente intersecare retta e parabola ottenendo una equazione di secondo grado, che ammette una sola soluzione se e solo se il $\Delta=0$.

Michele prof. Perini Matematica 139 / 213

Parabola

Parabola⁴ in sintesi:

Equazione	Note
asse di simmetria \parallel asse y :	vertice: $V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$
$y = ax^2 + bx + c$	fuoco: $F\left(-\frac{b}{2a}, \frac{1-\Delta}{4a}\right)$
concavità verso l'alto se $a > 0$	asse di simmetria: $x = -\frac{b}{2a}$
concavità verso il basso se $a < 0$	direttrice: $y = -\frac{1+\Delta}{4a}$
asse di simmetria \parallel asse x :	vertice: $V\left(-\frac{\Delta}{4a}, -\frac{b}{2a}\right)$
$x = ay^2 + by + c$	fuoco: $F\left(\frac{1-\Delta}{4a}, -\frac{b}{2a}\right)$
concavità verso destra se $a > 0$	asse di simmetria: $y = -\frac{b}{2a}$
concavità verso sinistra se $a < 0$	direttrice: $x = -\frac{1+\Delta}{4a}$

 $^{^4}$ le equazioni ricavate descrivono solo alcune delle possibili parabole sul piano xOy, è possibile ricondurre tutte le parabole a queste tramite una affinità.

Michele prof. Perini Matematica 140 / 213

Fascio di parabole

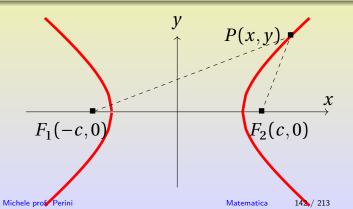
Un fascio di parabole è l'insieme dei punti delle curve ottenute al variare di $k \in \mathbb{R}$ dall'equazione:

$$y - ax^{2} - bx - c + k(y - a'x^{2} - b'x - c') = 0$$

Iperbole

Iperbole

Una iperbole è il luogo dei punti del piano P(x, y) che mantiene costante la differenza delle distanze tra due punti fissi, F_1 e F_2 , detti fuochi.



Equazione di una iperbole con fuochi in $F_1(-c,0)$ e $F_2(c,0)$, a>0 e c>0:

$$|PF_1 - PF_2| = 2a$$

$$|\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2}| = 2a$$

$$2x^2 + 2y^2 + 2c^2 - 2\sqrt{(x+c)^2 + y^2}\sqrt{(x-c)^2 + y^2} = 4a^2$$

$$\sqrt{(x+c)^2 + y^2}\sqrt{(x-c)^2 + y^2} = -2a^2 + x^2 + y^2 + c^2$$

Michele prof. Perini Matematica 143 / 213

se
$$-2a^2 + x^2 + y^2 + c^2 \ge 0 \rightarrow x^2 + y^2 \ge 2a^2 - c^2$$
:

$$((x+c)^2 + y^2)((x-c)^2 + y^2) = (-2a^2 + x^2 + y^2 + c^2)^2$$

$$c^4 - 2c^2x^2 + 2c^2y^2 + x^4 + 2x^2y^2 + y^4 =$$

$$= 4a^4 - 4a^2c^2 - 4a^2x^2 - 4a^2y^2 + c^4 + 2c^2x^2 + 2c^2y^2 + x^4 +$$

$$+2x^2y^2 + y^4$$

$$-2c^2x^2 = 4a^4 - 4a^2c^2 - 4a^2x^2 - 4a^2y^2 + 2c^2x^2$$

$$(a^2 - c^2)x^2 + a^2y^2 = a^4 - a^2c^2$$

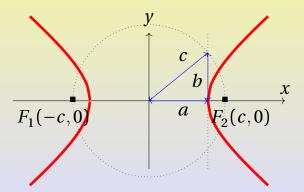
 $(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2)$

Matematica

Iperbole

ponendo $-b^2 = a^2 - c^2 \rightarrow c^2 = a^2 + b^2$ si ha:

$$\boxed{\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1}$$



Le condizioni $x_{\text{Permi}}^2 + y^2 \ge 2a^2 - c^2$ e $c^2 = a^2 + b^2$ risultano sempre verificate 213

Asintoti dell'iperbole

Intersechiamo l'iperbole con una qualsiasi retta per l'origine per determinare per quali valori di m essa è secante l'iperbole.

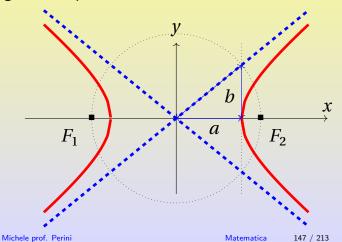
$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \\ y = mx \end{cases} \rightarrow \begin{cases} \frac{x^2}{a^2} - \frac{m^2 x^2}{b^2} = 1 \\ y = mx \end{cases} \rightarrow \begin{cases} (b^2 - a^2 m^2)x^2 = a^2 b^2 \\ y = mx \end{cases}$$

l'equazione di secondo grado $(b^2-a^2m^2)x^2=a^2b^2 \text{ ammette 2 soluzioni distinte se e solo se } \Delta>0 \to 4a^2b^2(b^2-a^2m^2)>0 \to m^2< \left(\frac{b}{a}\right)^2 \to -\frac{b}{a} < m < \frac{b}{a}$

Michele prof. Perini Matematica 146 / 213

Iperbole

Se $-\frac{b}{a} < m < \frac{b}{a}$ la retta è secante l'iperbole. Le rette $y = \pm \frac{b}{a}x$, sono le "prime" non secanti e non tangenti all'iperbole e sono dette asintoti.



Tangente ad una iperbole (r/\mathscr{I})

Una tangente ad una iperbole è una retta che interseca l'iperbole in un solo punto. Per determinare la tangente ad una iperbole è sufficiente intersecare retta e iperbole ottenendo una equazione di secondo grado, che ammette una sola soluzione se e solo se il $\Delta=0$.

Iperbole⁵ in sintesi:

iperbole in sintesi.	
Equazione	Note
fuochi sull'asse x :	fuochi: $F(x_0 \pm c, y_0)$
fuochi sull'asse x: $\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$	$c = \sqrt{a^2 + b^2}$
centro: $C(x_0, y_0)$	asintoti:
	$y - y_0 = \pm \frac{b}{a}(x - x_0)$
fuochi sull'asse y:	fuochi: $F(x_0, y_0 \pm c)$
$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = -1$	$c = \sqrt{a^2 + b^2}$
centro: $C(x_0, y_0)$	asintoti:
	$y - y_0 = \pm \frac{b}{a}(x - x_0)$

 $^{^{5}}$ le equazioni ricavate descrivono solo alcune delle possibili iperboli sul piano xOy, è possibile ricondurre tutte le iperboli a queste tramite una affinità.

Michele prof. Perini Matematica 149 / 213

Iperboli equilatere

Una iperbole equilatera è una iperbole con a = b, la sue equazione canonica è dunque:

$$x^2 - y^2 = \pm a^2$$

gli asintoti di una iperbole equilatera sono le bisettrici del primo e terzo e del secondo e quarto quadrante $(y = \pm x)$. L'equazione dell'iperbole si può riscrivere come:

$$(x-y)(x+y) = \pm a^2$$

Se all'equazione $(x - y)(x + y) = \pm a^2$ si applica la trasformazione⁶:

$$\begin{cases} x' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y \\ y' = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \end{cases} \leftrightarrow \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

si ottiene l'equazione:

$$x'y' = \pm \left(\frac{\sqrt{2}}{2}a\right)^2 \to xy = k$$

detta iperbole equilatera riferita ai propri asintoti.

 6 la trasformazione scelta corrisponde ad una rotazione di $\frac{\pi}{4}$ Michele prof. Perini Matematica 151 / 213

La trasformazione lineare (rotazione di $\frac{\pi}{4}$) e la sua inversa consentono di trovare le coordinate dei fuochi e le equazioni degli asintoti dell'iperbole riferita ai propri asintoti:

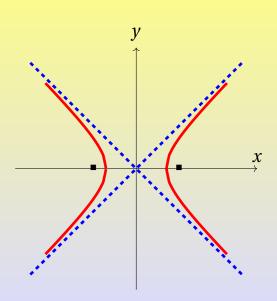
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Equazione:
$$(x-y)(x+y) = a^2 \to x'y' = \left(\frac{\sqrt{2}}{2}a\right)^2 = k$$

 $con \ k = \frac{a^2}{2} > 0 \ e \ a = \sqrt{2k}, \ c = 2\sqrt{k}$
Fuochi: $F(\pm c, 0) \to F'(\pm \sqrt{2k}, \pm \sqrt{2k})$
Asintoti: $y = x \to -\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' = \frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' \to x' = 0$
 $y = -x \to -\frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' = \frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' = \frac{\sqrt{2}}{2}x' + \frac{\sqrt{2}}{2}y' \to y' = 0$
Michele prof. Perini $\frac{\sqrt{2}}{2}x' - \frac{\sqrt{2}}{2}y' \to y' = 0$
Michele prof. Perini $\frac{\sqrt{2}}{2}x' - \frac{\sqrt{2}}{2}y' \to y' = 0$

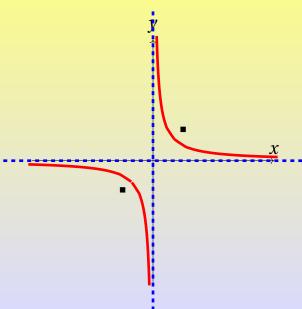
Coniche

Iperbole



Coniche

Iperbole



Michele prof. Perini

Matematica

154 / 213

Iperbole equilatera riferita ai propri asintoti:

iperbole equilatera interità ai propri asintoti.	
Equazione	Note
fuochi su $y = x$:	fuochi:
xy = k	$F(\pm\sqrt{2k},\pm\sqrt{2k})$
k > 0	$c = \sqrt{2}a = 2\sqrt{k}$
	asintoti:
	$y = 0 \lor x = 0$
fuochi su $y = -x$:	fuochi:
xy = k	$F(\mp\sqrt{-2k},\pm\sqrt{-2k})$
<i>k</i> < 0	$c = \sqrt{2}a = 2\sqrt{-k}$
	asintoti:
	$y = 0 \lor x = 0$

Funzione omografica:

Una funzione omografica è una iperbole equilatera riferita ai propri asintoti traslata con centro in $C(x_0, y_0)$. L'equazione della curva per effetto della traslazione diventa:

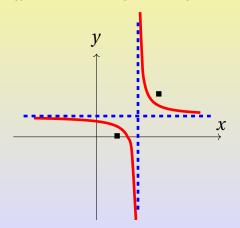
$$(x-x_0)(y-y_0) = k \to y = \frac{\alpha y_0 x + \alpha k - \alpha x_0 y_0}{\alpha x - \alpha x_0}, \ \alpha \neq 0$$

possiamo riscriverla come:

$$y = \frac{ax+b}{cx+d}$$
 con $a = \alpha y_0, b = \alpha k - \alpha x_0 y_0, c = \alpha, d = -\alpha x_0$

Iperbole

$$y = \frac{ax + b}{cx + d} \text{ con } x_0 = -\frac{d}{c}, \ y_0 = \frac{a}{c}, \ k = \frac{bc - ad}{c^2}$$



Funzione omografica:

Equazione	Note
$y = \frac{ax+b}{cx+d}$	fuochi:
$k = \frac{bc - ad}{c^2} > 0$	$F(\pm\sqrt{2k}-\frac{d}{c},\pm\sqrt{2k}+)$
t	$\left(\frac{a}{c}\right)$
	$c = \sqrt{2}a = 2\sqrt{k}$
	asintoti:
	$y = \frac{a}{c} \lor x = -\frac{d}{c}$
$y = \frac{ax+b}{cx+d}$	fuochi:
$y = \frac{ax+b}{cx+d}$ $k = \frac{bc-ad}{c^2} < 0$	$F(\mp\sqrt{-2k}-\frac{d}{c},\pm\sqrt{-2k}+\frac{a}{c})$
	$c = \sqrt{2}a = 2\sqrt{-k}$
	asintoti:
Michele prof. Perini	$y = \frac{a}{N}$ at $x_{ca} = -\frac{d}{158/213}$

Una equazione del tipo $Ax^2 + Cy^2 + Dx + Ey + F = 0$ ⁷ rappresenta una conica. In particolare se $AC \neq 0$:

$$A\left[x^{2} + \frac{D}{A}x\right] + C\left[y^{2} + \frac{E}{C}y\right] + F = 0$$

$$A\left[\left(x + \frac{D}{2A}\right)^{2} - \frac{D^{2}}{4A^{2}}\right] + C\left[\left(y + \frac{E}{2C}\right)^{2} - \frac{E^{2}}{4C^{2}}\right] + F = 0$$

$$A\left(x + \frac{D}{2A}\right)^{2} + C\left(y + \frac{E}{2C}\right)^{2} = \frac{D^{2}}{4A} + \frac{E^{2}}{4C} - F$$

Michele prof. Perini Matematica 159 / 213

 $^{^{7}}$ in generale l'equazione di una conica del tipo $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ è riconducibile, tramite una trasformazione lineare, ad una del tipo $Ax^2 + Cy^2 + Dx + Ey + F = 0$.

Una equazione del tipo $Ax^2 + Cy^2 + Dx + Ey + F = 0$ è:

• una circonferenza se:

$$A = C \neq 0 \land \left[\frac{D^2}{4A} + \frac{E^2}{4C} - F\right] A > 0$$

- una ellisse se: $AC > 0 \land \left[\frac{D^2}{4A} + \frac{E^2}{4C} F \right] A > 0$
- una parabola se:

$$((A = 0 \land D \neq 0) \lor (C = 0 \land E \neq 0)) \land \overline{A} = C = 0$$

- una iperbole se: $AC < 0 \land \frac{D^2}{4A} + \frac{E^2}{4C} F \neq 0$
- un punto, una o due rette o l'insieme vuoto altrimenti.

In sintesi una equazione del tipo

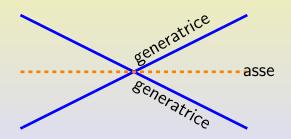
$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$
 è⁸:

- una ellisse (eventualmente degenere) se: AC > 0
 - una circonferenza (eventualmente degenere) se: A = C
- una parabola (eventualmente degenere) se: AC = 0
- una iperbole (eventualmente degenere) se: AC < 0

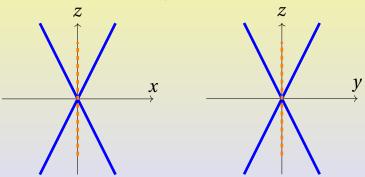
⁸Per conica degenere intendiamo qui una retta o una coppia di rette, un punto o l'insieme vuoto.

Cono

Un cono è la superficie che si ottiene facendo ruotare due rette incidenti, dette generatrici, attorno alla loro bisettrice, detta asse.



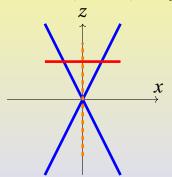
Consideriamo un "particolare" cono con asse coincidente con l'asse z di equazione $m^2x^2+m^2y^2=z^2,\ m>0$ le cui sezioni sono: sezione rispetto al piano y=0: sezione rispetto al piano x=0:



generatrici: $z = \pm mx \land y = 0$ generatrici: $z = \pm my \land x = 0$

Circonferenza

sezione rispetto al piano y = 0:



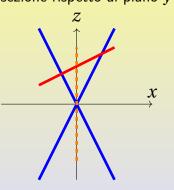
piano
$$\perp$$
 asse: $z = h$

$$\begin{cases} m^2x^2 + m^2y^2 = z^2 \\ z = h \end{cases}$$

$$x^2 + y^2 = \frac{h^2}{m^2}$$

Ellisse

sezione rispetto al piano y = 0:



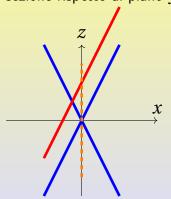
piano:
$$z = kx + q$$
 con
 $-m < k < m, q \neq 0$

$$\begin{cases} m^2x^2 + m^2y^2 = z^2 \\ z = kx + q \end{cases}$$

$$\frac{m^2 - k^2}{q^2}x^2 + \frac{m^2}{q^2}y^2 - \frac{2k}{q}x = 1$$

Parabola

sezione rispetto al piano y = 0:



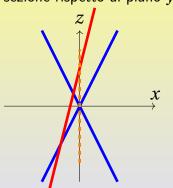
piano:
$$z = mx + q$$
, $q \neq 0$

$$\begin{cases} m^2x^2 + m^2y^2 = z^2 \\ z = mx + q \end{cases}$$

$$x = \frac{m}{2q}y^2 - \frac{q}{2m}$$

Iperbole

sezione rispetto al piano y = 0:

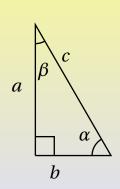


$$\begin{cases} m^2x^2 + m^2y^2 = z^2 \\ z = kx + q \end{cases}$$

$$\frac{k^2 - m^2}{q^2} x^2 - \frac{m^2}{q^2} y^2 + \frac{2k}{q} x = -1$$

piano: z = kx + q con $k > m \lor k < -m, q \ne 0$

Relazioni lato-angolo in un triangolo rettangolo:



$$a = c \cdot \sin \alpha = c \cdot \cos \beta$$

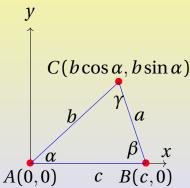
$$b = c \cdot \sin \beta = c \cdot \cos \alpha$$

$$c = \frac{a}{\sin \alpha} = \frac{a}{\cos \beta} = \frac{b}{\sin \beta} = \frac{b}{\cos \alpha}$$

$$\tan \alpha = \frac{a}{b}$$

$$\tan \beta = \frac{b}{a}$$

Per un triangolo qualsiasi posizionato come in figura si ottiene una relazione che permette di ottenere l'area del triangolo ABC.



$$\vec{AC} = \begin{pmatrix} b\cos\alpha \\ b\sin\alpha \end{pmatrix}$$
$$\vec{AB} = \begin{pmatrix} c \\ 0 \end{pmatrix}$$

L'area del triangolo ABC si può ottenere dalla relazione qui sotto dimostrata $(b > 0, c > 0, 0 \le \alpha \le \pi, \sin \alpha \ge 0)$:

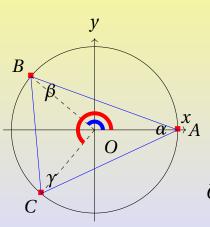
$$S_{ABC} = \frac{1}{2}x_B y_C = \frac{1}{2}bc\sin\alpha$$

In conclusione:

$$S_{ABC} = \frac{1}{2}bc\sin\alpha$$

Trigonometria Teorema della corda e dei seni

Ogni triangolo può essere inscritto in una circonferenza, scegliamo di inserirne uno ABC come in figura.



$$0 < v < w < 2\pi$$

$$O(0,0), A(r,0),$$

$$B(r\cos(v), r\sin(v)),$$

$$C(r\cos(w), r\sin(w))$$

$$\widehat{OAB} = \widehat{OBA} = \frac{\pi - v}{2}$$

$$\widehat{OBC} = \widehat{OCB} = \frac{\pi - (w - v)}{2}$$

Trigonometria Teorema della corda e dei seni

$$\widehat{AOB} = v, \ \widehat{AOC} = w, \ \widehat{OCA} = \widehat{OAC} = \frac{w - \pi}{2},$$

$$\alpha = \frac{\pi - v}{2} + \frac{w - \pi}{2} = \frac{w - v}{2}$$

$$\beta = \frac{\pi - v}{2} + \frac{\pi - (w - v)}{2} = \frac{2\pi - w}{2}$$

$$\gamma = \frac{\pi - (w - v)}{2} + \frac{w - \pi}{2} = \frac{v}{2}$$

Le ultime tre relazioni dimostrano che l'angolo al centro è doppio rispetto all'angolo alla circonferenza e che tutti gli angoli alla circonferenza di una corda di data lunghezza sono uguali tra loro. Infatti γ dipende solo da v che dipende solo dalla lunghezza di AB=c, così anche per α e β che dipendono solo ridalle corde BC=a e $CA=b_{\rm Matematica}$ 172 / 213

$$AB = c = r\sqrt{(\cos(v) - 1)^2 + (\sin(v))^2} =$$

$$= r\sqrt{\cos(v)^2 + \sin(v)^2 + 1 - 2\cos(v)} =$$

$$= 2r\sqrt{\frac{1 - \cos(v)}{2}} = 2r\sin\left(\frac{v}{2}\right) = 2r\sin(\gamma)$$
in sintesi:

 $c = 2r\sin(\gamma)$

Michele prof. Perini

Matematica

$$AC = b = r\sqrt{(\cos(w) - 1)^2 + (\sin(w))^2} =$$

$$= r\sqrt{\cos(w)^2 + \sin(w)^2 + 1 - 2\cos(w)} =$$

$$= 2r\sqrt{\frac{1 - \cos(w)}{2}} = 2r\sin\left(\frac{w}{2}\right) = 2r\sin\left(\pi - \frac{w}{2}\right) =$$

$$= 2r\sin\left(\frac{2\pi - w}{2}\right) = 2r\sin(\beta)$$

in sintesi:

$$b = 2r\sin(\beta)$$

Michele prof. Perini Matematica 174 / 213

Trigonometria Teorema della corda e dei seni

$$BC = a = r\sqrt{(\cos(w) - \cos(v))^2 + (\sin(w) - \sin(v))^2} =$$

$$= r\sqrt{2 - 2\cos(w)\cos(v) - 2\sin(w)\sin(v)} =$$

$$= 2r\sqrt{\frac{1 - (\cos(w)\cos(v) + \sin(w)\sin(v))}{2}} =$$

$$= 2r\sqrt{\frac{1 - \cos(w - v)}{2}} = 2r\sin(\frac{w - v}{2}) = 2r\sin(\alpha)$$
in sintesi:

 $a = 2r\sin(\alpha)$

Michele prof. Perini

Matematica

175 / 213

Trigonometria Teorema della corda e dei seni

Tenendo conto di quanto ottenuto possiamo enunciare i seguenti teoremi.

Teorema della corda

La misura di una corda di una circonferenza è pari al prodotto della misura del diametro della circonferenza per il seno dell'angolo alla circonferenza che insiste sulla corda.

Teorema dei seni

In un triangolo con lati di misura a, b, c, con angoli opposti rispettivamente α , β e γ vale la relazione:

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

Michele prof. Perini Matematica 176 / 213

I teoremi della corda e dei seni si possono sintetizzare in un solo teorema.

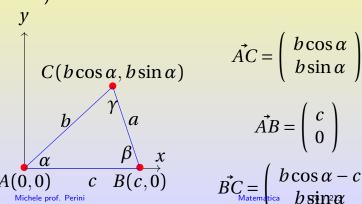
Teorema dei seni e della corda

In un triangolo con lati di misura a, b, c, con angoli opposti rispettivamente α , β e γ e inscritto in una circonferenza di raggio r, vale la relazione:

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} = 2r$$

Teorema del coseno

Inseriamo un triangolo in un piano cartesiano per ottenere un teorema che è l'estensione ad un triangolo qualsiasi del teorema di Pitagora (il teorema del coseno è noto anche come teorema di Carnot).



Tenendo conto del fatto che $a > 0, b > 0, c > 0, 0 \le \alpha \le \pi, \sin \alpha \ge 0$):

$$a = \left| \vec{BC} \right|$$

$$a^{2} = \overrightarrow{BC}^{2} = (b\cos\alpha - c)^{2} + (b\sin\alpha)^{2} =$$

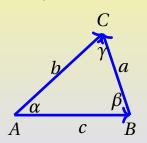
$$= b^{2}\cos^{2}\alpha + c^{2} - 2bc\cos\alpha + b^{2}\sin^{2}\alpha =$$

$$= b^{2} + c^{2} - 2bc\cos\alpha$$

In conclusione:

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

Grazie al teorema di Carnot è possibile ridefinire il prodotto scalare nei termini del modulo dei vettori moltiplicati e dell'angolo tra essi compreso.



$$\begin{vmatrix} \vec{AB} \end{vmatrix} = c$$
$$\begin{vmatrix} \vec{BC} \end{vmatrix} = a$$
$$\begin{vmatrix} \vec{AC} \end{vmatrix} = b$$
$$\vec{AB} + \vec{BC} = \vec{AC}$$

Coseno e prodotto scalare

$$\vec{AB} + \vec{BC} = \vec{AC}$$

$$\vec{BC} = \vec{AC} - \vec{AB}$$

$$(\vec{BC})^2 = (\vec{AC} - \vec{AB})^2$$

$$a^2 = b^2 + c^2 - 2\vec{AC} \cdot \vec{AB}$$

confrontando quest'ultima scrittura con il teorema di Carnot su ABC, $a^2 = b^2 + c^2 - 2bc\cos(\alpha)$, si può ottenere la relazione:

$$\vec{AC} \cdot \vec{AB} = bc \cos(\alpha) = |\vec{AC}| \cdot |\vec{AB}| \cos(\alpha)$$

In generale il prodotto scalare tra due vettori è il prodotto del modulo dei vettori per il coseno dell'angolo tra essi compreso.

Prodotto scalare

Il prodotto scalare tra due vettori \vec{a} e \vec{b} tra cui è compreso l'angolo γ si può scrivere anche come:

$$\vec{a} \cdot \vec{b} = ab\cos(\gamma)$$

$$(ax_{1} + b) + (ax_{2} + b) + \dots + (ax_{i} + b) + \dots + (ax_{n} + b) =$$

$$= (ax_{1} + ax_{2} + \dots + ax_{i} + \dots + ax_{n}) + \underbrace{b + \dots + b}_{n - \text{volte}} =$$

$$= a(x_{1} + x_{2} + \dots + x_{i} + \dots + x_{n}) + nb$$
oppure
$$\sum_{i=1}^{n} (ax_{i} + b) =$$

$$= \sum_{i=1}^{n} ax_{i} + \sum_{i=1}^{n} b =$$

 $= a \sum_{i=1}^{n} x_i + nb$

Indichiamo un dato di una indagine statistica con una lettera minuscola e un pedice:

$$x_1, x_2, \dots, x_i, \dots, x_N$$

a dati diversi corrispondono pedici diversi, a dati uguali corrispondono pedici uguali, la statistica comprende N dati in totale.

Frequenze assolute

Un medesimo dato può presentarsi può volte, in questo caso ad esso associamo una frequenza, cioè il numero di volte che tale dato si è presentato:

La scrittura significa che il dato x_i si è presentato un numero f_i di volte.

Frequenze relative

La totalità dei dati di una statistica è pari alla somma delle frequenze:

$$N = \sum_{i=1}^{n} f_i$$

Sono frequenze relative le f_R :

X	f	f_R	
x_1	f_1	$\frac{f_1}{N}$	
x_2	f_2	$\frac{f_2}{N}$	
x_i	f_i	$\frac{f_i}{N}$	
x_n	f_n	$\frac{f_n}{N}$ Ma	itematica

Frequenze cumulate

Le frequenze cumulate si ottengono sommando le frequenze assolute come mostrato in tabella:

X	f	f_C
x_1	f_1	f_1
x_2	f_2	$f_1 + f_2$
x_i	f_i	$f_1 + f_2 + \dots + f_i$
x_n	f_n	N

Le frequenze relative cumulate si ottengono sommando le frequenze relative come mostrato in tabella:

X	f	f_{RC}
x_1	f_1	$\frac{f_1}{N}$
x_2	f_2	$\frac{\overline{N}}{\frac{f_1+f_2}{N}}$
x_i	f_i	$\frac{f_1 + f_2 + \dots + f_i}{N}$
x_n	\int_{n}	1

La media aritmetica

La media aritmetica dei dati di una statistica è data dalla relazione:

$$\mu = \sum_{i=1}^{N} \frac{x_i}{N}$$

oppure, utilizzando le frequenze:

$$\mu = \sum_{i=1}^{n} \frac{f_i x_i}{N}$$

oppure utilizzando le frequenze relative:

$$\mu = \sum_{i=1}^{n} f_{Ri} x_i$$

La varianza dei dati di una statistica è data dalla relazione:

$$\sigma^{2} = \left[\sum_{i=1}^{N} \frac{(x_{i} - \mu)^{2}}{N} \right] = \sum_{i=1}^{N} \frac{x_{i}^{2} - 2\mu x_{i} + \mu^{2}}{N} =$$

$$= \sum_{i=1}^{N} \frac{x_{i}^{2}}{N} - 2\mu \sum_{i=1}^{N} \frac{x_{i}}{N} + \frac{N\mu^{2}}{N} = \sum_{i=1}^{N} \frac{x_{i}^{2}}{N} - 2\mu^{2} + \mu^{2} =$$

$$= \left[\sum_{i=1}^{N} \frac{x_{i}^{2}}{N} - \mu^{2} \right]$$

La deviazione standard o scarto quadratico medio è dato dalla:

$$\sigma = \sqrt{\sum_{i=1}^{N} \frac{(x_i - \mu)^2}{N}} = \sqrt{\sum_{i=1}^{N} \frac{x_i^2}{N} - \mu^2}$$

oppure in termini di frequenze assolute:

$$\sigma = \sqrt{\sum_{i=1}^{n} \frac{f_i(x_i - \mu)^2}{N}}$$

Lo scopo che ci prefiggiamo di raggiungere è di definire un indice che dia conto della dipendenza statistica tra due caratteri X e Y. Tabuliamo le frequenze con cui compaiono i caratteri oggetto di studio per meglio comprendere quale sia la relazione che intercorre tra le due. Denoteremo con $f(x_i, y_i)$ la frequenza con cui vengono rilevati entrambi i caratteri x_i e y_i (frequenze congiunte) e con $f(x_i)$ e $f(y_i)$ la totalità delle frequenze rispettivamente di x_i e y_i (frequenze marginali). L'insieme delle frequenze marginali è detto distribuzione marginale.

Tabella delle frequenze:

	y_1		y_j		y_h	Totale			
x_1	$f(x_1,y_1)$		$f(x_1,y_j)$		$f(x_1,y_h)$	$f(x_1)$			
x_i	$f(x_i,y_1)$		$f(x_i, y_j)$		$f(x_i, y_h)$	$f(x_i)$			
x_k	$f(x_k,y_1)$		$f(x_k, y_j)$		$f(x_k, y_h)$	$f(x_k)$			
Totale	$f(y_1)$		$f(y_j)$		$f(y_h)$	n			

Frequenze marginali di
$$X$$
: $f(x_i) = \sum_{j=1}^{h} f(x_i, y_j)$

Frequenze marginali di
$$Y$$
: $f(y_j) = \sum_{i=1}^{k} f(x_i, y_j)$

Totale delle frequenze:
$$n = \sum_{i=1}^{k} f(x_i) = \sum_{j=1}^{h} f(y_j) = \sum_{i=1}^{k} \sum_{j=1}^{h} f(x_i, y_j)$$

Tabella delle frequenze nell'ipotesi che X e Y siano indipendenti:

	y_1	 y_j	 ${\cal Y}_h$	Totale
x_1	$f'(x_1,y_1)$	 $f'(x_1,y_j)$	 $f'(x_1,y_h)$	$f(x_1)$
x_i	$f'(x_i, y_1)$	 $f'(x_i, y_j)$	 $f'(x_i, y_h)$	$f(x_i)$
x_k	$f'(x_k, y_1)$	 $f'(x_k, y_j)$	 $f'(x_k, y_h)$	$f(x_k)$
Totale	$f(y_1)$	 $f(y_j)$	 $f(y_h)$	n

Frequenze teoriche:
$$f'(x_i, y_j) = n \left(\frac{f(x_i)}{n} \right) \left(\frac{f(y_j)}{n} \right) = \frac{f(x_i)f(y_j)}{n}$$

Freq. marginali di
$$X$$
: $\sum_{j=1}^{h} f'(x_i, y_j) = \sum_{j=1}^{h} \frac{f(x_i)f(y_j)}{n} = \frac{f(x_i)}{n} \sum_{j=1}^{h} f(y_j) = f(x_i)$

Freq. marginali di
$$Y$$
: $\sum_{i=1}^k f'(x_i, y_j) = \sum_{i=1}^k \frac{f(x_i)f(y_j)}{n} = \frac{f(y_j)}{n} \sum_{i=1}^k f(x_i) = f(y_j)$

Michele prof. Perini Matematica 194 / 213

Test del chi quadro di Cramer

Tabella delle contingenze (differenza tra frequenze rilevate e teoriche):

555.15.15).									
	y_1		y_j		y_h	Totale			
x_1	$c(x_1,y_1)$		$c(x_1, y_j)$		$c(x_1, y_h)$	0			
						0			
x_i	$c(x_i, y_1)$		$c(x_i, y_j)$		$c(x_i, y_h)$	0			
						0			
x_k	$c(x_k, y_1)$		$c(x_k, y_j)$		$c(x_k, y_h)$	0			
Totale	0	0	0	0	0	0			

Contingenze:
$$c(x_i, y_i) = f(x_i, y_i) - f'(x_i, y_i)$$

F. m. cont. di
$$X$$
: $\sum_{j=1}^{h} c(x_i, y_j) = \sum_{j=1}^{h} f(x_i, y_j) - \sum_{j=1}^{h} f'(x_i, y_j) = f(x_i) - f(x_i) = 0$

F. m. cont. di
$$Y$$
: $\sum_{i=1}^{k} c(x_i, y_j) = \sum_{i=1}^{k} f(x_i, y_j) - \sum_{i=1}^{k} f'(x_i, y_j) = f(y_j) - f(y_j) = 0$

Michele prof. Perini Matematica 195 / 213

Test del chi quadro di Cramer

Le contingenze sono a somma nulla, per ottenere un indice complessivo non identicamente nullo si sceglie di tenere conto dei quadrati delle contingenze divisi per la frequenza teorica.

Tabella delle
$$d(x_1, y_j) = \frac{c^2(x_i, y_j)}{f'(x_i, y_j)}$$
:

	3 (103)								
	y_1		y_j		y_h	Totale			
x_1	$d(x_1,y_1)$		$d(x_1, y_j)$		$d(x_1,y_h)$				
x_i	$d(x_i, y_1)$		$d(x_i, y_j)$		$d(x_i, y_h)$				
x_k	$d(x_k, y_1)$		$d(x_k, y_j)$		$d(x_k, y_h)$				
Totale						χ^2			

Chi quadro:
$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^h \frac{c^2(x_i, y_j)}{f'(x_i, y_j)}$$

Statistica

Se X e Y sono **indipendenti** si ha

$$f(x_i, y_j) = f'(x_i, y_j)$$
 e quindi $\frac{c^2(x_i, y_j)}{f'(x_i, y_j)} = 0$

Tabella delle $d(x_1, y_j) = \frac{c^2(x_i, y_j)}{f'(x_i, y_j)}$ in caso di X e Y indipendenti:

	y_1		y_j		y_h	Totale					
x_1	0		0		0	0					
						0					
x_i	0		0		0	0					
						0					
x_k	0		0		0	0					
x_k Totale	0	0	0	0	0	$\chi^2 = 0$					

Test del chi quadro di Cramer

Se X e Y sono **dipendenti** si ha

$$f(x_i, y_j) = \begin{cases} 0 & \text{se } i \neq j \\ f(x_i) = f(y_i) & \text{se } i = j \end{cases}$$

$$f(x_i) = 0$$
 se $i > \min(h, k)$, $f(y_i) = 0$ se $j > \min(h, k)$

Tabella delle frequenze nel caso di X e Y dipendenti:

rabella delle riequelles rier edes di 11 e 1 dipendenti.										
	<i>y</i> ₁		y_i		y_k		y_h	Totale		
x_1	$f(x_1)$	0	0	0	0	0	0	$f(x_1)$		
	0		0	0	0	0	0			
x_i	0	0	$f(x_i)$	0	0	0	0	$f(x_i)$		
	0	0	0		0	0	0			
x_k	0	0	0	0	$f(x_k)$	0	0	$f(x_k)$		
Totale	$f(x_1)$		$f(x_i)$		$f(x_k)$	0	0	n		

La perfetta dipendenza si ha se $x_i \rightarrow y_i$ e viceversa per ogni i, il massimo numero di connessioni è $\min(k,h)$.

Michele prof. Perini Matematica 198 / 213

Se X e Y sono **dipendenti** le frequenze teoriche diventano:

$$f'(x_i, y_j) = \begin{cases} \frac{f(x_i)f(y_j)}{n} & \text{se} \quad i \le \min(h, k) \land j \le \min(h, k) \\ 0 & \text{se} \quad i > \min(h, k) \lor j > \min(h, k) \end{cases}$$

Tabella delle frequenze nel caso di X e Y dipendenti:

	y_1		y_i		y_k		y_h	Totale			
x_1	$\frac{f^2(x_1)}{n}$		$f'(x_1, y_i)$		$f'(x_1, y_k)$	0	0	$f(x_1)$			
						0	0				
x_i	$f'(x_i, y_1)$		$\frac{f^2(x_i)}{n}$		$f'(x_i, y_k)$	0	0	$f(x_i)$			
						0	0				
x_k	$f'(x_k, y_1)$		$f'(x_k, y_i)$		$\frac{f^2(x_k)}{n}$	0	0	$f(x_k)$			
Totale	$f(x_1)$		$f(x_i)$		$f(x_k)$	0	0	n			

$$\frac{c^2(x_i, y_j)}{f'(x_i, y_j)} = \frac{\left(f(x_i, y_j) - f'(x_i, y_j)\right)^2}{f'(x_i, y_j)} =$$

$$= \left(f(x_i, y_j) - \frac{f(x_i)f(y_j)}{n}\right)^2 \frac{n}{f(x_i)f(y_j)} =$$

$$= \left(f^2(x_i, y_j) - 2\frac{f(x_i, y_j)f(x_i)f(y_j)}{n} + \frac{f^2(x_i)f^2(y_j)}{n^2}\right) \frac{n}{f(x_i)f(y_j)} =$$

$$= \frac{nf^2(x_i, y_j)}{f(x_i)f(y_j)} - 2f(x_i, y_j) + \frac{f(x_i)f(y_j)}{n} =$$

Michele prof. Perini

Nel caso della perfetta dipendenza si ha:

$$\frac{c^{2}(x_{i}, y_{j})}{f'(x_{i}, y_{j})} = \begin{cases} 0 & \text{se } i \lor j > \min(h, k) \\ n - 2f(x_{i}) + \frac{f^{2}(x_{i})}{n} & \text{se } i = j \\ \frac{f(x_{i})f(y_{j})}{n} & \text{se } i \neq j \leq \min(h, k) \end{cases}$$

per la somma di tutte le celle (χ^2) :

$$\underbrace{\sum_{i=1}^{\min(h,k)} \left(n - 2f(x_i) + \frac{f^2(x_i)}{n}\right)}_{i=j} + \underbrace{\sum_{i=1}^{\min(h,k)} \sum_{j=1}^{\min(h,k)} \frac{f(x_i)f(y_j)}{n}}_{i \wedge j \leq \min(h,k)} - \underbrace{\sum_{i=1}^{\min(h,k)} \frac{f^2(x_i)}{n}}_{i \neq j \leq \min(h,k)} = \underbrace{\sum_{i=1}^{\min(h,k)} \frac{f^2(x_i)}{n}}_{i \neq j \leq \min(h,k)} + \underbrace{\sum_{i=1}^{\min(h,k)} \sum_{j=1}^{\min(h,k)} \frac{f(x_i)f(y_j)}{n}}_{i \neq j \leq \min(h,k)} - \underbrace{\sum_{i=1}^{\min(h,k)} \frac{f^2(x_i)}{n}}_{i \neq j \leq \min(h,k)} = \underbrace{\sum_{i=1}^{\min(h,k)} \frac{f^2(x_i)}{n}}_{i \neq j \leq \min(h,k)} + \underbrace{\sum_{i=1}^{\min(h,k)} \frac{f^2(x_i)}{n}}_{i \neq j \leq \min(h,k)} - \underbrace{\sum_{i=1}^{\min(h,k)} \frac{f^2(x_i)}{n}}_{i \neq j \leq \min(h,k)} + \underbrace{\sum_{i=1}^{\min(h,k)} \frac{f^2(x_i)}{n}}_{i \neq j \leq \min(h,k)}$$

Michele prof. Perini

Matematica

201 / 213

$$= \sum_{i=1}^{\min(h,k)} (n - 2f(x_i)) + \sum_{i=1}^{\min(h,k)} \sum_{j=1}^{\min(h,k)} \frac{f(x_i)f(y_j)}{n} =$$

$$= n \cdot \min(h,k) - 2n + \frac{1}{n} \sum_{i=1}^{\min(h,k)} f(x_i) \sum_{j=1}^{\min(h,k)} f(y_j) =$$

$$= n \cdot \min(h,k) - 2n + \frac{n^2}{n} = n(\min(h,k) - 1)$$

Michele prof. Perini Matematica 202 / 213

Formula alternativa per il χ^2 :

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{h} \frac{c^{2}(x_{i}, y_{j})}{f'(x_{i}, y_{j})} =$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{h} \left(\frac{nf^{2}(x_{i}, y_{j})}{f(x_{i})f(y_{j})} - 2f(x_{i}, y_{j}) + \frac{f(x_{i})f(y_{j})}{n} \right) =$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{h} \frac{nf^{2}(x_{i}, y_{j})}{f(x_{i})f(y_{j})} - 2n + n =$$

$$= n \left(\sum_{i=1}^{k} \sum_{j=1}^{h} \frac{f^{2}(x_{i}, y_{j})}{f(x_{i})f(y_{j})} - 1 \right)$$

Test del chi quadro di Cramer

In sintesi la tabella delle
$$d(x_1, y_j) = \frac{c^2(x_i, y_j)}{f'(x_i, y_j)}$$
:

	y_1	 y_i	 y_h	Totale
x_1	$d(x_1,y_1)$	 $d(x_1, y_j)$	 $d(x_1, y_h)$	
x_i	$d(x_i, y_1)$	 $d(x_i, y_j)$	 $d(x_i, y_h)$	
x_k	$d(x_k, y_1)$	 $d(x_k, y_j)$	 $d(x_k, y_h)$	
Totale		 	 	χ^2

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^h \frac{c^2(x_i, y_j)}{f'(x_i, y_j)} = n \left(\sum_{i=1}^k \sum_{j=1}^h \frac{f^2(x_i, y_j)}{f(x_i)f(y_j)} - 1 \right)$$

$$0 \le \chi^2 \le n(\min(h, k) - 1)$$

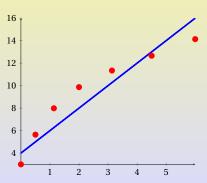
Michele prof. Perini Matematica 204 / 213

Per ottenere un indice compreso tra zero e uno, dove zero indica la perfetta indipendenza tra due caratteri e uno la perfetta dipendenza, normalizziamo il χ^2 :

$$\chi_{\text{normalizzato}}^2 = \frac{\chi^2}{n(\min(h, k) - 1)}$$

Regressione lineare

Dato un certo numero di punti su un piano ci proponiamo di trovare un metodo che consenta di determinare se questi punti sono linearmente correlati e di determinare la retta che eventualmente li correli.



206 / 213

Regressione lineare

Dati gli n punti $P_i(x_i, y_i)$ si ha:

media ascisse:
$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$
, varianza: $\sigma_x^2 = \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n} = \sum_{i=1}^{n} \frac{x_i^2}{n} - \overline{x}^2$

media ordinate:
$$\overline{y} = \sum_{i=1}^{n} \frac{y_i}{n}$$
, varianza: $\sigma_y^2 = \sum_{i=1}^{n} \frac{(y_i - \overline{y})^2}{n} = \sum_{i=1}^{n} \frac{y_i^2}{n} - \overline{y}^2$

retta interpolante:
$$y = mx + q \rightarrow \overline{y} = m\overline{x} + q$$

varianza sulle
$$y_{teoriche} - y_{dati}$$
: $\sigma^2 = \sum_{i=1}^n \frac{(y_i - (mx_i + q))^2}{n}$

covarianza:
$$\sigma_{xy} = \sum_{i=1}^{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n} = \sum_{i=1}^{n} \frac{x_i y_i - x_i \overline{y} - \overline{x} y_i + \overline{x} \overline{y}}{n} =$$

$$= \sum_{i=1}^{n} \frac{x_i y_i}{n} - \overline{y} \sum_{i=1}^{n} \frac{x_i}{n} - \overline{x} \sum_{i=1}^{n} \frac{y_i}{n} + \overline{x} \overline{y} = \sum_{i=1}^{n} \frac{x_i y_i}{n} - \overline{x} \overline{y}$$

Vogliamo che la retta di regressione renda minima la varianza sulla differenza tra le $y_{teoriche}$ e le y_{dati} , deve cioè essere minima la quantità:

$$\sum_{i=1}^{n} (y_i - (mx_i + q))^2 = \sum_{i=1}^{n} (y_i - mx_i - q)^2 =$$

$$= \sum_{i=1}^{n} (m^2 x_i^2 + 2mqx_i - 2mx_i y_i + q^2 - 2qy_i + y_i^2) =$$

ricordando che $q = \overline{y} - m\overline{x}$:

$$=\sum_{i=1}^{n}(\overline{x}^2m^2-2\overline{x}m^2x_i+m^2x_i^2-2\overline{xy}m+2\overline{x}my_i+2\overline{y}mx_i-2mx_iy_i+\overline{y}^2-2\overline{y}y_i+y_i^2)=$$

ricordando che

$$\sum_{i=1}^{n} x_i = n\overline{x}, \sum_{i=1}^{n} y_i = n\overline{y}, \sum_{i=1}^{n} x_i^2 = n\sigma_x^2 + n\overline{x}^2, \sum_{i=1}^{n} y_i^2 = n\sigma_y^2 + n\overline{y}^2 \sum_{i=1}^{n} x_i y_i = n\sigma_{xy} + n\overline{xy}$$
 si ottiene:

$$= \sigma_x^2 n m^2 - 2\sigma_{xy} n m + n\sigma_y^2$$

il polinomio di secondo grado in m assume valore minimo per:

$$m = \frac{2\sigma_{xy}n}{2\sigma_x^2n} = \frac{\sigma_{xy}}{\sigma_x^2}$$

La retta che meglio interpola i dati è la retta:

$$y = \frac{\sigma_{xy}}{\sigma_x^2} x + \overline{y} - \frac{\sigma_{xy}}{\sigma_x^2} \overline{x}$$

oppure:

$$y - \overline{y} = \frac{\sigma_{xy}}{\sigma_x^2} (x - \overline{x})$$

Una possibile misura della bontà della linearità della distribuzione di punti di cui abbiamo ricavato la retta di regressione può essere data dalla varianza sulla differenza tra y teoriche e quelle dei dati, che per la m della retta di regressione diventa:

$$\sigma^{2} = \frac{\sigma_{x}^{2} n \left(\frac{\sigma_{xy}}{\sigma_{x}^{2}}\right)^{2} - 2\sigma_{xy} n \left(\frac{\sigma_{xy}}{\sigma_{x}^{2}}\right) + n\sigma_{y}^{2}}{n} =$$

$$= -\frac{\sigma_{xy}^{2}}{\sigma_{x}^{2}} + \sigma_{y}^{2} = \frac{\sigma_{y}^{2} \sigma_{x}^{2} - \sigma_{xy}^{2}}{\sigma_{x}^{2}}$$

Regressione lineare

La relazione $\sigma^2 = \frac{\sigma_y^2 \sigma_x^2 - \sigma_{xy}^2}{\sigma_x^2}$ ci permette di ricavare:

$$\frac{\sigma_y^2 \sigma_x^2 - \sigma_{xy}^2}{\sigma_x^2} \ge 0 \to \sigma_{xy}^2 \le \sigma_y^2 \sigma_x^2 \to -\sigma_y \sigma_x \le \sigma_{xy} \le \sigma_y \sigma_x$$

- vi è perfetta linearità se $\sigma^2 = 0 \rightarrow \sigma_{xy} = \pm \sigma_y \sigma_x$
- i punti da cui si ricava la retta di regressione sono sempre più lontani da una distribuzione lineare al crescere di σ^2 cioè per $\sigma_{xy}^2 = 0$.

Per quanto detto possiamo definire un coefficiente, detto di correlazione lineare, come:

$$r = \frac{\sigma_{xy}}{\sigma_y \sigma_x} \to -1 \le r \le 1$$

e da questo definiamo anche il coefficiente di determinazione come:

$$r^2 = \frac{\sigma_{xy}^2}{\sigma_y^2 \sigma_x^2} \to 0 \le r^2 \le 1$$

- vi è perfetta linearità se $r^2 = 1$
- i punti da cui si ricava la retta di regressione sono molto lontani da una distribuzione lineare se $r^2 = 0$.